Skip to main content
Log in

Cooperative Dynamic Games with Control Lags

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

Controls with lags are control strategies with prolonged effects lasting for more than one stage of the game after the controls had been executed. Lags in controls yielding adverse effects often make the negative impacts more significant. Cooperation provides an effective means to alleviate the problem and obtains an optimal solution. This paper extends the existing paradigm in cooperative dynamic games by allowing the existence of controls with lag effects on the players’ payoffs in subsequent stages. A novel dynamic optimization theorem with control lags is developed to derive the Pareto optimal cooperative controls. Subgame consistent solutions are derived to ensure sustainable cooperation. In particular, subgame consistency guarantees that the optimality principle agreed upon at the outset will remain effective throughout the game and, hence, there is no incentive for any player to deviate from cooperation scheme. A procedure for imputation distribution is provided to formulate a dynamically stable cooperative scheme under control lags. An application in cooperative environmental management is presented. This is the first time that cooperative dynamic games with control lags are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arthur WB (1977) Control of linear processes with distributed lags using dynamic programming from first principles. J Optim Theory Appl 23:429–443

    Article  MathSciNet  MATH  Google Scholar 

  2. Basar T, Olsder GJ (1995) Dynamic noncooperative game theory, 2nd edn. Academic Press, London

    MATH  Google Scholar 

  3. Bellman R (1957) Dynamic programming. Princeton University Press, Princeton

    MATH  Google Scholar 

  4. Bellman R (1957) Terminal control, time lags, and dynamic programming. Proc Natl Acad Sci USA 43:927–930

    Article  MathSciNet  MATH  Google Scholar 

  5. Brandt-Pollmann U, Winkler R, Sager S, Moslener U, Schlöder J (2008) Numerical solution of optimal control problems with constant control delays. Comput Econ 31:181–206

    Article  MATH  Google Scholar 

  6. Burdet CA, Sethi SP (1976) On the maximum principle for a class of discrete dynamical systems with lags. J Optim Theory Appl 19:445–454

    Article  MathSciNet  MATH  Google Scholar 

  7. Hartl RF, Sethi SP (1984) Optimal control of a class of systems with continuous lags: dynamic programming approach and economic interpretations. J Optim Theory Appl 43(1):73–88

    Article  MathSciNet  MATH  Google Scholar 

  8. Huschto T, Feichtinger G, Hartl RF, Kort PM, Sager S (2011) Numerical solution of a conspicuous consumption model with constant control delay. Automatica 47:1868–1877

    Article  MathSciNet  MATH  Google Scholar 

  9. Isaacs R (1965) Differential games. Wiley, New York

    MATH  Google Scholar 

  10. Kramer JDR (1960) On control of linear systems with time lags. Inf Control 3:299–326

    Article  MathSciNet  MATH  Google Scholar 

  11. Krasovkii NN (1972) External control in a nonlinear differential game. J Appl Math Mech 36:986–1006

    MathSciNet  Google Scholar 

  12. Petrosyan LA, Danilov NN (1979) Stability of solutions of nonzero sum differential games with transferrable payoffs. Vestn Leningr Univ 21:52–59

    MATH  Google Scholar 

  13. Pontryagin LS (1966) On the theory of differential games. Uspekhi Mat Nauk 21:219–274

    MathSciNet  MATH  Google Scholar 

  14. Sethi SP, Mcguire TW (1977) Optimal skill mix: an application of the maximum principle for systems with retarded controls. J Optim Theory Appl 23:245–275

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang PKC (1975) Time-optimal control of time-lag systems with time-lag controls. J Math Anal Appl 52:366–378

    Article  MathSciNet  MATH  Google Scholar 

  16. Winkler R, Brandt-Pollmann U, Moslener U, Schlöder J (2003) Time-lags in capital accumulation. In: Ahr D, Fahrion R, Oswald M, Reinelt G (eds) Operations research proceedings. Springer, Berlin, pp 451–458

    Google Scholar 

  17. Yeung DWK (2014) Dynamically consistent collaborative environmental management with production technique choices. Ann Oper Res 220:181–204

    Article  MathSciNet  MATH  Google Scholar 

  18. Yeung DWK, Petrosyan LA (2010) Subgame consistent solutions for cooperative stochastic dynamic games. J Optim Theory Appl 145:579–596

    Article  MathSciNet  MATH  Google Scholar 

  19. Yeung DWK, Petrosyan LA (2011) Subgame consistent cooperative solution of dynamic games with random horizon. J Optim Theory Appl 150:78–97

    Article  MathSciNet  MATH  Google Scholar 

  20. Yeung DWK, Petrosyan LA (2013) Subgame-consistent cooperative solutions in randomly furcating stochastic dynamic games. Math Comput Model 57:976–991

    Article  MathSciNet  MATH  Google Scholar 

  21. Yeung DWK, Petrosyan LA (2016) Subgame consistent cooperation: a comprehensive treatise. Springer, Berlin. https://doi.org/10.1007/978-981-10-1545-8

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Russian Science Foundation Grant (RSF N17-11-01079). The authors would like to thank two anonymous reviewers for their extremely valuable comments and suggestions that improve this paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. K. Yeung.

Appendices

Appendix A: Proof of Theorem 2.1

According to (2.4) in Theorem 2.1

$$ \begin{aligned} W\left( {k,x;\mu_{k - 1}^{(T)} ,\mu_{k - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right) & = \mathop {\hbox{max} }\limits_{{\mu_{k}^{(0)} ,\mu_{k}^{(T)} }} \left\{ {g_{k}^{{}} \left( {x,\mu_{k}^{(0)} ,\mu_{k}^{(T)} ;\mu_{k - 1}^{(T)} ,\mu_{k - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right)\,\delta^{k - 1} } \right. \\ & \quad \left. { + \,W\left[ {\left. {k + 1,f_{k}^{{}} \left( {x,\mu_{k}^{(0)} ,\mu_{k}^{(T)} } \right);\mu_{k}^{(T)} ,\mu_{k - 1}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right)} \right]} \right\}. \\ \end{aligned} $$
(A.1)

We prove the validity of (A.1) by contradiction. Suppose

$$ \begin{aligned} & W\left( {k,x;\mu_{k - 1}^{(T)} ,\mu_{k - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right) < \mathop {\hbox{max} }\limits_{{\mu_{k}^{(0)} ,\mu_{k}^{(T)} }} \left\{ {g_{k}^{{}} \left( {x,\mu_{k}^{(0)} ,\mu_{k}^{(T)} ;\mu_{k - 1}^{(T)} ,\mu_{k - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right)\,\delta^{k - 1} } \right. \\ & \quad \left. { + \,W\left[ {\left. {k + 1,f_{k}^{{}} \left( {x,\mu_{k}^{(0)} ,\mu_{k}^{(T)} } \right);\mu_{k}^{(T)} ,\mu_{k - 1}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right)} \right]} \right\}. \\ \end{aligned} $$
(A.2)

This is not possible because on the right-hand-side of (A.2), we choose controls \( u_{k}^{(0)} \) and \( \mu_{k}^{(T)} \) to maximize the value inside the curly brackets, and this maximized value would at best equal the maximal payoff on the right-hand-side.Now suppose

$$ \begin{aligned} & W\left( {k,x;\mu_{k - 1}^{(T)} ,\mu_{k - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right) > \mathop {\hbox{max} }\limits_{{\mu_{k}^{(0)} ,\mu_{k}^{(T)} }} \left\{ {g_{k}^{{}} \left( {x,\mu_{k}^{(0)} ,\mu_{k}^{(T)} ;\mu_{k - 1}^{(T)} ,\mu_{k - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right)\,\delta^{k - 1} } \right. \\ & \quad \left. { + \,W\left[ {\left. {k + 1,f_{k}^{{}} \left( {x,\mu_{k}^{(0)} ,\mu_{k}^{(T)} } \right);\mu_{k}^{(T)} ,\mu_{k - 1}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right)} \right]} \right\}. \\ \end{aligned} $$
(A.3)

From (A.1) we obtain \( W(k,x;\mu_{k - 1}^{(T)} ,\mu_{k - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} ) \) which is the maximal of the payoffs

$$ \begin{aligned} & \left\{ {g_{k}^{{}} \left( {x,\mu_{k}^{(0)} ,\mu_{k}^{(T)} ;\mu_{k - 1}^{(T)} ,\mu_{k - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right)} \right. \\ & \quad \left. { + \sum\limits_{t = k + 1}^{T} {g_{t}^{{}} \left( {x_{t}^{{}} ,\mu_{t}^{(0)} ,\mu_{t}^{(T)} ;\mu_{t - 1}^{(T)} ,\mu_{t - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right)} \,\delta^{k - 1} + q_{T + 1}^{{}} (x_{T + 1}^{{}} )\delta^{T} } \right\} \\ & = g_{k}^{{}} \left( {x,\tilde{\mu }_{k}^{(0)} ,\tilde{\mu }_{k}^{(T)} ;\mu_{k - 1}^{(T)} ,\mu_{k - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right) \\ & \quad + \sum\limits_{t = k + 1}^{T} {g_{t}^{{}} \left( {x_{t}^{{}} ,\tilde{\mu }_{t}^{(0)} ,\tilde{\mu }_{t}^{(T)} ;\mu_{t - 1}^{(T)} ,\mu_{t - 2}^{(T)} ,v,\mu_{1}^{(T)} } \right)} \,\delta^{k - 1} \; + q_{T + 1}^{{}} (x_{T + 1}^{{}} )\;\delta^{T} . \\ \end{aligned} $$
(A.4)

By definition, the term \( W(k + 1,x;\mu_{k}^{(T)} ,\mu_{k - 1}^{(T)} , \ldots ,\mu_{1}^{(T)} ) \) is the maximal of the payoffs

$$ \left\{ {\sum\limits_{t = k + 1}^{T} {g_{t}^{{}} \left( {x_{t}^{{}} ,\mu_{t}^{(0)} ,\mu_{t}^{(T)} ;\mu_{t - 1}^{(T)} ,\mu_{t - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right)} \,\delta^{k - 1} + q_{T + 1}^{{}} (x_{T + 1}^{{}} )\delta^{T} } \right\} $$

which is no less than

$$ \left\{ {\sum\limits_{t = k + 1}^{T} {g_{t}^{{}} \left( {x_{t}^{{}} ,\tilde{\mu }_{t}^{(0)} ,\tilde{\mu }_{t}^{(T)} ;\mu_{t - 1}^{(T)} ,\mu_{t - 2}^{(T)} , \cdots ,\mu_{1}^{(T)} } \right)} \,\delta^{k - 1} + q_{T + 1}^{{}} (x_{T + 1}^{{}} )\delta^{T} } \right\}. $$
(A.5)

Hence,

$$ \begin{aligned} & W\left( {k,x;\mu_{k - 1}^{(T)} ,\mu_{k - 2}^{(T)} , \cdots ,\mu_{1}^{(T)} } \right) \le \mathop {\hbox{max} }\limits_{{\mu_{k}^{(0)} ,\mu_{k}^{(T)} }} \left\{ {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right.g_{k}^{{}} \left( {x,\mu_{k}^{(0)} ,\mu_{k}^{(T)} ;\mu_{k - 1}^{(T)} ,\mu_{k - 2}^{(T)} , \cdots ,\mu_{1}^{(T)} } \right)\,\delta^{k - 1} \\ & \quad \left. { +\, W\left[ {\left. {k + 1,f_{k}^{{}} \left( {x,\mu_{k}^{(0)} ,\mu_{k}^{(T)} } \right);\mu_{k}^{(T)} ,\mu_{k - 1}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right)} \right]} \right\}. \\ \end{aligned} $$
(A.6)

(A.6) contradicts with (A.3). Hence the validity of Eq. (2.4) stands.

In addition, to solve the problem (2.3)–(2.4), we adopt the technique of backward induction. Consider first the last operational stage \( T \), invoking Theorem 2.1 we have

$$ \begin{aligned} & W\left( {T,x;\mu_{T - 1}^{(T)} ,\mu_{T - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right) \\ & = \mathop {\hbox{max} }\limits_{{\mu_{T}^{(0)} ,\mu_{T}^{(T)} }} \left\{ {g_{T}^{{}} \left( {x,\mu_{T}^{(0)} ,\mu_{T}^{(T)} ;\mu_{T - 1}^{(T)} ,\mu_{T - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right)\,\delta^{T - 1} } \right. \\ & \quad \left. { + \,q_{T + 1}^{{}} \left[ {f_{T}^{{}} (x,\mu_{T}^{(0)} ,\mu_{T}^{(T)} } \right]\delta^{T} } \right\}. \\ \end{aligned} $$
(A.7)

The maximization operator in stage \( T \) involves \( \mu_{T}^{(0)} \) and \( \mu_{T}^{(T)} \) only. However, the current state \( x \) and the previous determined controls \( (\mu_{T - 1}^{(T)} ,\mu_{T - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} ) \) appear in the stage \( T \) payoff function. If the first order conditions of the maximization problem in (A.7) satisfy the implicit function theorem, one can obtain the optimal controls \( \mu_{T}^{(0)} \) and \( \mu_{T}^{(T)} \) as functions of \( x \) and \( (\mu_{T - 1}^{(T)} ,\mu_{T - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} ) \). Substituting these optimal controls into the function on the right-hand-side of (A.7) yields the function \( W(T,x;\mu_{T - 1}^{(T)} ,\mu_{T - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} ) \), which satisfies the optimal conditions of a maximum for given \( x \) and \( (\mu_{T - 1}^{(T)} ,\mu_{T - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} ) \).

Consider the second last operational stage \( T - 1 \), invoking Theorem 2.1 we have

$$ \begin{aligned} &W\left( {T - 1,x;\mu_{T - 2}^{(T)} ,\mu_{T - 3}^{(T)} , \cdots ,\mu_{1}^{(T)} } \right) \\ & = \mathop {\hbox{max} }\limits_{{\mu_{T - 1}^{(1)} }} \left\{ {g_{T - 1}^{{}} \left( {x,\mu_{T - 1}^{(0)} ,\mu_{T - 1}^{(T)} ;\mu_{T - 2}^{(T)} ,\mu_{T - 3}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right)\,\delta^{T - 2} } \right. \\ & \quad \left. { + \,W\left[ {T,f_{T - 1}^{{}} \left( {x,\mu_{T - 1}^{(0)} ,\mu_{T - 1}^{(T)} } \right);\mu_{T - 1}^{(T)} ,\mu_{T - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right]} \right\}. \\ \end{aligned} $$
(A.8)

The maximization operator in stage \( T - 1 \) involves \( \mu_{T - 1}^{(0)} \) and \( \mu_{T - 1}^{(T)} \). The current state \( x \) and the previous determined controls \( (\mu_{T - 2}^{(T)} ,\mu_{T - 3}^{(T)} , \ldots ,\mu_{1}^{(T)} ) \) appear in the stage \( T - 1 \) payoff function. If the first order conditions of the maximization problem in (A.8) satisfy the implicit function theorem, one can obtain the optimal controls \( \mu_{T - 1}^{(0)} \) and \( \mu_{T - 1}^{(T)} \) as functions of \( x \) and previously determined controls \( (\mu_{T - 2}^{(T)} ,\mu_{T - 3}^{(T)} , \ldots ,\mu_{1}^{(T)} ) \). Substituting these optimal controls into the function on the right-hand-side of (A.8) yields the function \( W(T - 1,x;\mu_{T - 2}^{(T)} ,\mu_{T - 3}^{(T)} , \ldots ,\mu_{1}^{(T)} ) \).

Now consider stage \( k \in \{ T - 2,T - 3, \ldots ,2,1\} \), invoking Theorem 2.1 we have

$$ \begin{aligned} &W\left( {k,x;\mu_{k - 1}^{(T)} ,\mu_{k - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right) = \mathop {\hbox{max} }\limits_{{\mu_{k}^{(T)} }} \left\{ {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right.g_{k}^{{}} \left( {x,\mu_{k}^{(0)} ,\mu_{k}^{(T)} ;\mu_{k - 1}^{(T)} ,\mu_{k - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right)\,\delta^{k - 1} \\ & \quad + W\left[ {k + 1,f_{k}^{{}} \left( {x,\mu_{k}^{(0)} ,\mu_{k}^{(T)} } \right);\mu_{k}^{(T)} ,\mu_{k - 1}^{(T)} , \ldots ,\mu_{1}^{(T)} } \right]\left. {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right\}. \\ \end{aligned} $$
(A.9)

The maximization operator involves \( \mu_{k}^{(0)} \) and \( \mu_{k}^{(T)} \). Again, the current state \( x \) and the previous determined controls \( (\mu_{k - 1}^{(T)} ,\mu_{k - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} ) \) appear in the stage \( k \) payoff function. If the first order conditions of the maximization problem in (A.9) satisfy the implicit function theorem, one can obtain the optimal controls \( \mu_{k}^{(0)} \) and \( \mu_{k}^{(T)} \) as functions of \( x \) and \( (\mu_{k - 1}^{(T)} ,\mu_{k - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} ) \). Substituting these optimal controls into the function on the right-hand-side of (A.9) yields the function \( W(k,x;\mu_{k - 1}^{(T)} ,\mu_{k - 2}^{(T)} , \ldots ,\mu_{1}^{(T)} ) \). □

Appendix B: Proof of Theorem 3.1

The conditions in (3.4)–(3.5) satisfy the optimal conditions of the dynamic optimization technique with control lags in Theorem 2.1 and hence an optimal solution to the control problem results. □

Appendix C: Proof of Theorem 3.2

Conditions (3.9)–(3.10) show that \( V_{{}}^{i} \left( {k,x;\underline{\mu }_{k - 1}^{(T)**} ,\underline{\mu }_{k - 2}^{(T)**} , \ldots ,\underline{\mu }_{1}^{(T)**} } \right) \) is the maximized payoff of player \( i \in N \) according to Theorem 2.1 given the game equilibrium strategies of the other \( n - 1 \) players. Hence a Nash equilibrium results. □

Appendix D: Proof of Theorem 4.1

Using (4.2) one can obtain

$$ \begin{aligned} &\xi_{{}}^{i} \left( {k + 1,x_{k + 1}^{*} ;\underline{\mu }_{k - 1}^{(T)*} ,\underline{\mu }_{k - 2}^{(T)*} , \ldots ,\underline{\mu }_{1}^{(T)*} } \right) = B_{k + 1}^{i} \left( {x_{k + 1}^{*} ;\underline{\mu }_{k - 1}^{(T)*} ,\underline{\mu }_{k - 2}^{(T)*} , \ldots ,\underline{\mu }_{1}^{(T)*} } \right)\;\delta^{k} \\ & \quad + \left\{ {\sum\limits_{\zeta = k + 2}^{T} {B_{\zeta }^{i} \left( {x_{\zeta }^{*} ;\underline{\mu }_{k - 1}^{(T)*} ,\underline{\mu }_{k - 2}^{(T)*} , \cdots ,\underline{\mu }_{1}^{(T)*} } \right)\delta^{\zeta - 1} + q_{T + 1}^{i} (x_{T + 1}^{{}} )\;\delta_{{}}^{T} } } \right\}, \\ \end{aligned} $$
(D.1)

Upon substituting (D.1) into (4.2) yields

$$ \begin{aligned} &\xi_{{}}^{i} \left( {k,x_{k}^{*} ;\underline{\mu }_{k - 1}^{(T)*} ,\underline{\mu }_{k - 2}^{(T)*} , \ldots ,\underline{\mu }_{1}^{(T)*} } \right) = B_{k}^{i} \left( {x_{k}^{*} ;\underline{\mu }_{k - 1}^{(T)*} ,\underline{\mu }_{k - 2}^{(T)*} , \ldots ,\underline{\mu }_{1}^{(T)*} } \right)\delta^{k - 1} \\ & \quad + \xi_{{}}^{i} \left( {k + 1,x_{k + 1}^{*} ;\underline{\mu }_{k - 1}^{(T)*} ,\underline{\mu }_{k - 2}^{(T)*} , \ldots ,\underline{\mu }_{1}^{(T)*} } \right), \\ \end{aligned} $$

which can be expressed as

$$ \begin{aligned} &\xi_{{}}^{i} \left( {k,x_{k}^{*} ;\underline{\mu }_{k - 1}^{(T)*} ,\underline{\mu }_{k - 2}^{(T)*} , \ldots ,\underline{\mu }_{1}^{(T)*} } \right) = B_{k}^{i} \left( {x_{k}^{*} ;\underline{\mu }_{k - 1}^{(T)*} ,\underline{\mu }_{k - 2}^{(T)*} , \ldots ,\underline{\mu }_{1}^{(T)*} } \right)\delta^{k - 1} \\ & \quad + \xi_{{}}^{i} \left( {k + 1,f_{k}^{{}} \left( {x_{k}^{*} ,\underline{\mu }_{k}^{(0)*} ,\underline{\mu }_{k}^{(T)*} } \right);\underline{\mu }_{k - 1}^{(T)*} ,\underline{\mu }_{k - 2}^{(T)*} , \ldots ,\underline{\mu }_{1}^{(T)*} } \right). \\ \end{aligned} $$
(D.2)

From (D.2) one can obtain Theorem 4.1. □

Appendix E: Proof of Proposition 5.1

First, we consider the last operating stage \( T = 10 \). Using (5.5) and Proposition 5.1 we can obtain the optimal cooperative strategies:

$$ \mu_{10}^{(0)i*} = - A_{11}^{{}} \frac{{b_{{}}^{i} (x)^{1/2} \delta }}{{2\gamma_{10}^{i} }}, $$
$$ \mu_{10}^{(10)i*} = \frac{{\alpha_{10}^{i} - \varepsilon_{10}^{i(10)i} - \omega_{10}^{\ell (10)i} + \delta A_{11}^{{}} a_{{}}^{i} }}{{2c_{10}^{i} }},\quad i,\ell \in \{ 1,2\} \;{\text{and}}\;\ell \ne i. $$
(E.1)

Substituting (E.1) into the stage 10 equation in (5.5) we obtain:

$$ \begin{aligned} &W\left( {10,x;\mu_{9}^{(10)} ,\mu_{8}^{(10)} , \ldots ,\mu_{1}^{(10)} } \right) = (A_{10}^{{}} x + C_{10}^{{}} )\delta^{9} \\ & = \sum\limits_{j = 1}^{2} {\left[ {\alpha_{10}^{j} \frac{{\alpha_{10}^{j} - \varepsilon_{10}^{j(10)j} - \omega_{10}^{\ell (10)j} + \delta A_{11}^{{}} a_{{}}^{j} }}{{2c_{10}^{j} }} - c_{10}^{j} \left( {\frac{{\alpha_{10}^{j} - \varepsilon_{10}^{j(10)j} - \omega_{10}^{\ell (10)j} + \delta A_{11}^{{}} a_{{}}^{j} }}{{2c_{10}^{j} }}} \right)^{2} } \right.} \\ & \quad - \gamma_{10}^{j} \left( {\frac{{\delta A_{11}^{{}} b_{{}}^{j} }}{{2\gamma_{10}^{j} }}} \right)^{2} x - h_{10}^{j} x - \varepsilon_{10}^{j(10)j} \frac{{\alpha_{10}^{j} - \varepsilon_{10}^{j(10)j} - \omega_{10}^{\ell (10)j} + \delta A_{11}^{{}} a_{{}}^{j} }}{{2c_{10}^{j} }} \\ & \quad \left. { -\, \omega_{10}^{j(10)\ell } \frac{{\alpha_{10}^{\ell } - \varepsilon_{10}^{\ell (10)\ell } - \omega_{10}^{j(10)\ell } + \delta A_{11}^{{}} a_{{}}^{\ell } }}{{2c_{10}^{\ell } }} - \sum\limits_{t = 1}^{9} {\varepsilon_{10}^{j(t)j} \mu_{t}^{(10)j} } - \sum\limits_{t = 1}^{9} {\omega_{10}^{j(t)\ell } \mu_{t}^{(10)\ell } } } \right]\delta^{9} \\ & \quad + \left[ {A_{11}^{{}} \left( {\sum\limits_{j = 1}^{2} {a_{{}}^{j} \frac{{\alpha_{10}^{j} - \varepsilon_{10}^{j(10)j} - \omega_{10}^{\ell (10)j} + \delta A_{11}^{{}} a_{{}}^{j} }}{{2c_{10}^{j} }}} + \sum\limits_{j = 1}^{2} {b_{{}}^{j} } \frac{{\delta A_{11}^{{}} b_{{}}^{j} x}}{{2\gamma_{10}^{j} }} - \lambda x} \right) + C_{11}^{{}} } \right]\delta^{10} . \\ \end{aligned} $$
(E.2)

Both the LHS and RHS of (E.2) are linear functions of \( x \). For (E.2) to hold it is required that:

$$ A_{10}^{{}} = \sum\limits_{j = 1}^{2} {\left[ { - \gamma_{10}^{j} \left( {\frac{{\delta A_{11}^{{}} b_{{}}^{j} }}{{2\gamma_{10}^{j} }}} \right)^{2} - h_{10}^{j} } \right] + \left[ {A_{11}^{{}} \left( {\sum\limits_{j = 1}^{2} {b_{{}}^{j} } \frac{{\delta A_{11}^{{}} b_{{}}^{j} }}{{2\gamma_{10}^{j} }} - \lambda } \right)} \right]\delta ,} $$
(E.3)

and \( C_{10}^{{}} \) being equal to the (undiscounted) expression not involving \( x \) on the right-hand-side of (E.3). Note that the term \( C_{10}^{{}} \) contains previously executed strategies in the form of \( - \sum\nolimits_{t = 1}^{9} {\varepsilon_{10}^{j(t)j} \mu_{t}^{(10)j} } - \sum\nolimits_{t = 1}^{9} {\omega_{10}^{j(t)\ell } \mu_{t}^{(10)\ell } } \).

Invoking Proposition 5.1 and performing similar operations in stage \( k \in \{ 9,8, \ldots ,1\} \) in (5.5), we obtain the optimal cooperative strategies:\( \mu_{k}^{(0)i*} = - A_{k + 1}^{{}} \frac{{b_{{}}^{i} (x)^{1/2} \delta }}{{2\gamma_{k}^{i} }} \),

$$ \begin{aligned} \mu_{k}^{(10)i*} & = \frac{{\alpha_{k}^{i} - \varepsilon_{k}^{i(k)i} - \omega_{k}^{\ell (k)i} + \delta A_{k + 1}^{{}} a_{{}}^{i} + \delta \left( {\partial C_{k + 1}^{{}} /\partial \mu_{k}^{(10)i} } \right)}}{{2c_{k}^{i} }}, \\ & \quad i,\ell \in \{ 1,2\} \;{\text{and}}\;\ell \ne i, \\ \end{aligned} $$
(E.4)

where \( \partial C_{k + 1}^{{}} /\partial u_{k}^{(10)i} = - \sum\nolimits_{\tau = k + 1}^{10} {} \delta_{{}}^{\tau - (k + 1)} (\varepsilon_{\tau }^{i(k)i} + \omega_{\tau }^{\ell (k)i} ) \). Substituting (E.4) into Eq. (5.5) for \( k \in \{ 8,7, \cdots ,1\} \) we obtain:

$$ \begin{aligned} &W\left({k,x;\mu_{k - 1}^{(10)},\mu_{k - 2}^{(10)}, \ldots,\mu_{1}^{(10)}} \right) = (A_{k}^{{}} x + C_{k}^{{}})\delta^{k - 1} \hfill \\ &= \sum\limits_{j = 1}^{2} {\left[{\alpha_{k}^{j} \frac{{\alpha_{k}^{j} - \varepsilon_{k}^{j(k)j} - \omega_{k}^{\ell (k)j} + \delta A_{k + 1}^{{}} a_{{}}^{j}}}{{2c_{k}^{j}}} - c_{k}^{j} \left({\frac{{\alpha_{k}^{j} - \varepsilon_{k}^{j(k)j} - \omega_{k}^{\ell (k)j} + \delta A_{k + 1}^{{}} a_{{}}^{j}}}{{2c_{k}^{j}}}} \right)^{2}} \right.} \hfill \\ & \quad - \gamma_{k}^{j} \left({\frac{{\delta A_{k + 11}^{{}} b_{{}}^{j}}}{{2\gamma_{k}^{j}}}} \right)^{2} x - h_{k}^{j} x - \varepsilon_{k}^{j(k)j} \frac{{\alpha_{k}^{j} - \varepsilon_{k}^{j(k)j} - \omega_{k}^{\ell (k)j} + \delta A_{k + 1}^{{}} a_{{}}^{j}}}{{2c_{k}^{j}}} \hfill \\ & \left. \quad {- \,\omega_{k}^{j(k)\ell} \frac{{\alpha_{k}^{\ell} - \varepsilon_{k}^{\ell (k)\ell} - \omega_{k}^{j(k)\ell} + \delta A_{k + 1}^{{}} a_{{}}^{\ell}}}{{2c_{10}^{\ell}}} - \sum\limits_{t = 1}^{k - 1} {\varepsilon_{k}^{j(t)j} \mu_{t}^{(10)j} - \sum\limits_{t = 1}^{k - 1} {\omega_{k}^{j(t)\ell} \mu_{t}^{(10)\ell}}}} \right]\delta^{k - 1} \hfill \\ & \quad + \left[{A_{k + 1}^{{}} \left({\sum\limits_{j = 1}^{2} {a_{{}}^{j} \frac{{\alpha_{k}^{j} - \varepsilon_{k}^{j(k)j} - \omega_{k}^{\ell (k)j} + \delta A_{k + 1}^{{}} a_{{}}^{j}}}{{2c_{9}^{j}}}} + \sum\limits_{j = 1}^{2} {b_{{}}^{j}} \frac{{\delta A_{k + 1}^{{}} b_{{}}^{j} x}}{{2\gamma_{k}^{j}}} - \lambda x} \right) + C_{k + 1}^{{}}} \right]\delta^{k}. \hfill \\ \end{aligned} $$
(E.5)

Both the LHS and RHS of (E.5) are linear functions of \( x \). For (E.5) to hold it is required that:

$$ A_{k}^{{}} = \sum\limits_{j = 1}^{2} {\left[ { - \gamma_{k}^{j} \left( {\frac{{\delta A_{k + 1}^{{}} b_{{}}^{j} }}{{2\gamma_{k}^{j} }}} \right)^{2} - h_{k}^{j} } \right]} + \left[ {A_{k + 1}^{{}} \left( {\sum\limits_{j = 1}^{2} {b_{{}}^{j} } \frac{{\delta A_{k + 1}^{{}} b_{{}}^{j} }}{{2\gamma_{k}^{j} }} - \lambda } \right)} \right]\delta , $$
(E.6)

and \( C_{k}^{{}} \) being equal to the (undiscounted) expression not involving \( x \) on the right-hand-side of (E.5). Note that the term \( - \sum\nolimits_{t = 1}^{k - 1} {\varepsilon_{k}^{j(t)j} \mu_{t}^{(10)j} } - \sum\nolimits_{t = 1}^{9} {\omega_{k}^{j(t)\ell } \mu_{t}^{(10)\ell } } \) appears in \( C_{k}^{{}} \) as given parameters.

Finally substituting the optimal cooperative controls

$$ \mu_{10}^{(10)i*} = \frac{{\alpha_{10}^{i} - \varepsilon_{10}^{i(10)i} - \omega_{10}^{\ell (10)i} + \delta A_{11}^{{}} a_{{}}^{i} }}{{2c_{10}^{i} }},\quad i,\ell \in \{ 1,2\} \;{\text{and}}\;\ell \ne i. $$
$$ \begin{aligned} \mu_{k}^{(10)i*} & = \frac{{\alpha_{k}^{i} - \varepsilon_{k}^{i(k)i} - \omega_{k}^{\ell (k)i} + \delta A_{k + 1}^{{}} a_{{}}^{i} - \delta \sum\nolimits_{\tau = k + 1}^{10} {\delta_{{}}^{\tau - (k + 1)} \left( {\varepsilon_{\tau }^{i(k)i} + \omega_{\tau }^{\ell (k)i} } \right)} }}{{2c_{k}^{i} }}, \\ & \quad i,\ell \in \{ 1,2\} ,\;\ell \ne i \;{\text{and}}\;k \in \{ 1,2, \ldots ,9\} , \\ \end{aligned} $$
(E.7)

into \( C_{k}^{{}} \) for \( k \in \{ 1,2, \ldots ,10\} \), we can express \( C_{k}^{{}} \) in terms of the model parameters explicitly. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeung, D.W.K., Petrosyan, L.A. Cooperative Dynamic Games with Control Lags. Dyn Games Appl 9, 550–567 (2019). https://doi.org/10.1007/s13235-018-0266-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-018-0266-6

Keywords

Navigation