Skip to main content
Log in

A scalable geometric algorithm for community detection from social networks with incremental update

  • Original Article
  • Published:
Social Network Analysis and Mining Aims and scope Submit manuscript

Abstract

In recent years, a series of algorithms have been proposed to detect community from social networks. Most of the algorithms are based on traditional spectral clustering algorithms such as k-means. One of the major limitations of such algorithms is that entire eigenvalues of the similarity matrix of the network need to be calculated in advance. In the case of a massive network, calculating entire eigenvalues is computationally expensive. This paper proposes a scalable geometric algorithm to find communities from large social networks. The major contributions of this work are: (1) We transform the network data into points by preserving the intrinsic properties and structure of the original data. (2) A novel geometric clustering is derived. And we use the data structure C-Tree and Voronoi diagram for identifying communities from the points in the Euclidean plane. (3) Since social networks grow dynamically, we further extend the algorithm to incrementally identify the community membership of newly introduced members. Experiments on both synthetic and real-world datasets show that the algorithm, in terms of objective matrices, is equally good as spectral clustering algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal G, Kempe D (2008) Modularity-maximizing graph communities via mathematical programming. Eur Phys J B 66(3):409–418

    Article  MathSciNet  MATH  Google Scholar 

  • Aggarwal CC, Wang H (2010) Managing and mining graph data. Springer, New York

    Book  MATH  Google Scholar 

  • Barnes ER (1982) An algorithm for partitioning the nodes of a graph. SIAM J Algebraic Discret Methods 3:541–550

    Article  MathSciNet  MATH  Google Scholar 

  • Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 10:P10008

    Article  Google Scholar 

  • Brand M, Huang K (2003) A unifying theorem for spectral embedding and clustering. In: AISTATS

  • Chen M, Kuzmin K, Szymanski BK (2014) Community detection via maximization of modularity and its variants. IEEE Trans Comput Soc Syst 1(1):46–65

    Article  Google Scholar 

  • Chung FRK (1997) Spectral graph theory, vol 92. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Condon A, Karp RM (2001) Algorithms for graph partitioning on the planted partition model. Random Struct Algorithms 18:116–140 Citeseer

    Article  MathSciNet  MATH  Google Scholar 

  • Dhanjal C, Gaudel R, Clémençon S (2014) Efficient eigen-updating for spectral graph clustering. Neurocomputing 131:440–452 Elsevier

    Article  Google Scholar 

  • Dhillon IS, Guan Y, Kulis B (2007) Weighted graph cuts without eigenvectors a multilevel approach. IEEE Trans Pattern Anal Mach Intell 29:1944–1957

    Article  Google Scholar 

  • DuBois CL (2008) UCI network data repository. University of California, Irvine, School of Information and Computer Sciences.http://networkdata.ics.uci.edu

  • Duchon J (1977) Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Schempp W, Zeller K(eds) Constructive theory of functions of several variables. Springer, Berlin Heidelberg, pp 85–100

  • Ganti V, Ramakrishnan R, Gehrke J, Powell A, French J (1999) Clustering large datasets in arbitrary metric spaces. In: Proceedings of the 15th IEEE international conference on data engineering, 1999, pp 502–511

  • Hartigan JA, Wong MA (1979) Algorithm as 136: A k-means clustering algorithm. J R Stat Soc. Series C (Applied Statistics) 28(1):100–108

    MATH  Google Scholar 

  • Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359–392

    Article  MathSciNet  MATH  Google Scholar 

  • Karypis G, Kumar V (1999) Parallel multilevel series k-way partitioning scheme for irregular graphs. SIAM Rev 41(2):278–300

    Article  MathSciNet  MATH  Google Scholar 

  • Karypis G, Vipin K (1997) A coarse-grain parallel formulation of multilevel k-way graph partitioning algorithm. In: PPSC

  • Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J 49(2):291–307

    Article  MATH  Google Scholar 

  • Lancichinetti Andrea, Fortunato Santo, Radicchi Filippo (2008) Benchmark graphs for testing community detection algorithms. Phys Rev E 78(4):46–110

    Article  Google Scholar 

  • Lanczos C (1950) An iteration method for the solution of the eigen- value problem of linear differential and integral operators. United States Government. Press Office

  • Leskovec J, Krevl A (2014) SNAP datasets: Stanford large network dataset collection. http://snap.stanford.edu/data

  • Massen CP, Doye JPK (2005) Identifying communities within energy landscapes. Phys Rev E 71(4):046101

    Article  MathSciNet  Google Scholar 

  • Medus A, Acuna G, Dorso CO (2005) Detection of community structures in networks via global optimization. Phys A Stat Mech Appl 358(2):593–604 Elsevier

    Article  Google Scholar 

  • Min W, Ke L, He X (2004) Locality pursuit embedding. Pattern Recognit 37(4):781–788

    Article  MATH  Google Scholar 

  • Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69(6):066–133

    Article  Google Scholar 

  • Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103(23):8577–8582

    Article  Google Scholar 

  • Newman MEJ (2013) Spectral methods for community detection and graph partitioning. Phys Rev E 88(4):042822

    Article  Google Scholar 

  • Ng AY, Jordan MI, Weiss Y et al (2002) On spectral clustering: Analysis and an algorithm. Adv Neural Inf Process Syst 2:849–856

    Google Scholar 

  • Nguyen NP, Dinh TN, Xuan Y, Thai MT (2011) Adaptive algorithms for detecting community structure in dynamic social networks. In: Proceedings of the IEEE INFOCOM, pp 2282–2290

  • Nguyen NP, Dinh TN, Shen Y, Thai MT (2014) Dynamic social community detection and its applications. PloS One 9(4):e91431

    Article  Google Scholar 

  • Ning H, Xu W, Chi Y, Gong Y, Huang TS (2007) Incremental spectral clustering with application to monitoring of evolving blog communities. In: SIAM, pp 261–272

  • Preparata FP, Shamos M (2012) Computational geometry: an introduction. Springer, New York

    MATH  Google Scholar 

  • Rattigan MJ, Maier M, Jensen D (2007) Graph clustering with network structure indices. In: Proceedings of the 24th international conference on machine learning, ACM, pp 783–790

  • Sales-Pardo M, Guimera R, Moreira AA, Nunes Amaral LA (2007) Extracting the hierarchical organization of complex systems. Proc Natl Acad Sci 104(39):15224–15229

    Article  Google Scholar 

  • Shen H-W, Cheng X-Q, Wang Y-Z, Chen Y (2012) A dimensionality reduction framework for detection of multiscale structure in heterogeneous networks. J Comput Sci Technol 27(2):341–357

    Article  MATH  Google Scholar 

  • Surendran S, Chitraprasad D, Kaimal MR (2014) Voronoi diagram-based geometric approach for social network analysis. In: Computational intelligence, cyber security and computational models, Springer, pp 359–369

  • van der Maaten Laurens JP, Postma Eric O, van den Herik H Jaap (2009) Dimensionality reduction: a comparative review. J Mach Learn Res 10(1–41):66–71

    Google Scholar 

  • Whang JJ, Sui X, Dhillon IS (2012) Scalable and memory efficient clustering of large-scale social networks. In: IEEE 12th international conference on data mining (ICDM), pp 705–714

  • Xiang Shiming, Nie Feiping, Song Yangqiu, Zhang Changshui, Zhang Chunxia (2009) Embedding new data points for manifold learning via coordinate propagation. Knowl Inf Syst 19(2):159–184

    Article  Google Scholar 

  • Xie J, Chen M, Szymanski BK (2013) LabelrankT: incremental community detection in dynamic networks via label propagation. In: Proceedings of the workshop on dynamic networks management and mining, ACM, pp 25–32

  • Zachary WW (1977) An information flow model for conflict and fission in small groups. J Anthropol Res 33:452–473

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subu Surendran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surendran, S., Chithraprasad, D. & Kaimal, M.R. A scalable geometric algorithm for community detection from social networks with incremental update. Soc. Netw. Anal. Min. 6, 90 (2016). https://doi.org/10.1007/s13278-016-0399-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13278-016-0399-9

Keywords

Navigation