Skip to main content
Log in

Activity correlation spectroscopy: a novel method for inferring social relationships from activity data

  • Original Article
  • Published:
Social Network Analysis and Mining Aims and scope Submit manuscript

Abstract

Inferring social relationships among individuals is a difficult problem, typically requiring either intrusive measurements (e.g., surveys) or convenience samples (e.g., ties captured by online social networking systems). Automatically collected activity data from mobile devices or similar sources provide a promising alternative for inexpensive and unobtrusive detection of interpersonal relationships. Here, we introduce a new method—activity correlation spectroscopy—for inferring relationships by exploiting the spectral and distributional structure of activity correlation within dyads. Unlike existing techniques, our approach can be employed with minimal, individual-level (i.e., non-relational), and non-identifying data that are easily collected using commodity hardware. We demonstrate our methodology via an application to detection of friendship and group co-membership using mobile device and survey data from the MIT Reality Mining study (Eagle et al. in Proc Natl Acad Sci 106:15274–15278, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. When not simultaneously active (e.g., for periods in which i and j are not both present within the system of interest), we take \({\hat{\rho }}_{ij}=0\).

References

  • Baker WE, Faulkner RR (1993) The social organization of conspiracy: illegal networks in the heavy equipment industry. Am Sociol Rev 58:837–860

    Article  Google Scholar 

  • Bernard HR, Killworth P, Kronenfeld D, Sailer L (1984) The problem of informant accuracy. Annu Rev Anthropol 13:495–517

    Article  Google Scholar 

  • Butts CT, Petrescu-Prahova M, Remy Cross B (2007) Responder communication networks in the World Trade Center disaster: implications for modeling of communication within emergency settings. J Math Sociol 31(2):121–147

    Article  Google Scholar 

  • Butts CT (2003) Network inference, error, and informant (in)accuracy: a Bayesian approach. Soc Netw 25:103–140

    Article  Google Scholar 

  • Choudhury MD, Mason W, Hofman J, Watts D (2010) Inferring relevant social networks from interpersonal communication. In: WWW’10 Proceedings of the 19th international conference on World Wide Web. pp 301–310

  • Clauset A, Moore C, Newman MEJ (2008) Hierarchical structure and the prediction of missing links in networks. Nature 453:98–101

    Article  Google Scholar 

  • Cornwell B, Schumm LP, Laumann EO, Kim J, Kim Y-J (2014) Assessment of social network change in a national longitudinal survey. J Gerontol Ser B Psychol Sci Soc Sci 69:S75–S82

    Article  Google Scholar 

  • Crandall DJ, Backstrom L, Cosley D, Suri S, Huttenlocher D, Kleinberg J (2010) Inferring social ties from geographic coincidences. Proc Natl Acad Sci 107:22436

    Article  Google Scholar 

  • Eagle N, Pentland A, Lazer D (2009) Inferring social network structure using mobile phone data. Proc Natl Acad Sci 106:15274–15278

    Article  Google Scholar 

  • Frank O, Strauss D (1986) Markov graphs. J Am Stat Assoc 81:832–842

    Article  MathSciNet  MATH  Google Scholar 

  • Gjoka M, Sirivianos M, Markopoulou A, Yang X (2008) Poking Facebook: characterization of osn applications. In: WOSN’08: Proceedings of the first workshop on online social networks. Seattle, WA, USA, pp 31–36

  • Guimera R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895–900

    Article  Google Scholar 

  • Kilduff M, Krackhardt D (2008) Interpersonal networks in organizations: cognition, dynamics, and culture. Cambridge University Press, Personality. ISBN 978-0-521-68558-0

  • Krackhardt D (1987) Cognitive social structures. Soc Netw 9(2):109–134

    Article  MathSciNet  Google Scholar 

  • Lagomarsino MC, Jona P, Bassetti B, Isambert H (2001) Hierarchy and feedback in the evolution of the Escherichia coli transcription network. Proc Natl Acad Sci 104:5516–5520

    Article  Google Scholar 

  • Lomb NR (1976) Least-squares frequency analysis of unequally spaced data. Astrophys Space Sci 39:447–462

    Article  Google Scholar 

  • Marsden PV (2005) Recent developments in network measurement, chapter 2. In: Carrington PJ, Scott J, Wasserman S (eds) Models and methods in social network analysis. Cambridge University Press, Cambridge, pp 8–30

    Chapter  Google Scholar 

  • Martin A (2012) Don’t mention it: why people don’t share job information, when they do, and why it matters. Soc Netw 34:181–192

    Article  Google Scholar 

  • McDonald S, Day JC (2010) Race, gender and the invisible hand of social capital. Sociol Compass 4:532–543

    Article  Google Scholar 

  • McNett M, Voelker G (2005) Access and mobility of wireless PDA users. ACM SIGMOBILE Mob Comput Commun Rev 9:40–50

    Article  Google Scholar 

  • Miritello G, Moro E, Lara R, Martinez-Lopez R, Belchamber J, Roberts SGB, Dunbar RIM (2013) Time as a limited resource. Soc Netw 35:89–95

    Article  Google Scholar 

  • Morris M, Handcock MS, Hunter DR (2008) Specification of exponential family random graph models: terms and computational aspects. J Stat Softw 24:1548

    Article  Google Scholar 

  • Muehlenbrock M, Brdiczka O, Snowdon D, Meunier J (2004) Learning to detect user activity and availability from a variety of sensor data. In: PerCom’04: Proceedings of the 2004 IEEE international conference on pervasive computing, Piscataway, NY, USA

  • Newman M, Girvan M (2004) Finding and evaluating community structures in networks. Phys Rev E 69:026113

    Article  Google Scholar 

  • O’Malley AJ, Arbesman S, Steiger DM, Fowler JH, Christakis NA (2012) Egocentric social network structure, health, and pro-social behaviors in a national panel study of Americans. PLoS ONE 7:e36250

    Article  Google Scholar 

  • Paruchuri S (2009) Intra organizational networks, inter organizational networks, and the impact of central inventors: a longitudinal study of pharmaceutical firms. Organ Sci 21:1–18

    Google Scholar 

  • Scargle JD (1982) Studies in astronomical time series analysis. II-statistical aspects of spectral analysis of unevenly spaced data. Astrophys J 263:835–853

    Article  Google Scholar 

  • Sharma N, Ghosh S, Benevenuto F, Ganguly N, Gummadi K (2012) Inferring who-is-who in the Twitter social network. In: Proceedings of the Workshop on Online Social Networks (with ACM SIGCOMM)

  • Smith S (2010) A test of sincerity: how Black and Latino service workers make decisions about making referrals. Ann Am Acad Polit Soc Sci 629:30–52

    Article  Google Scholar 

  • Sorenson O (2003) Social networks and industrial geography. J Evolut Econ 13:513–527

    Article  Google Scholar 

  • Tang J, Lou T, Kleinberg J (2012) Inferring social ties across heterogenous networks. In: WSDM, pp 743–752

  • Tang W, Zhuang H, Tang J (2011) Learning to infer social ties in large networks. In: Proceedings of ECML/PKDD-11

  • Wang C, Butts CT, Hipp JR, Jose R, Lakon CM (2016) Multiple imputation for missing edge data: a predictive evaluation method with application to Add Health. Soc Netw 45:89–98

    Article  Google Scholar 

  • Wasserman S, Faust K (1986) Social network analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Wu Y, Pitipornvivat N, Zhao J, Yang S, Huang G, Qu H (2016) egoslider: Visual analysis of egocentric network evolution. IEEE Trans Vis Computer Graph 22(1):260–269

    Article  Google Scholar 

  • Wyatt D, Choudhury T, Bilmes J, Kitts JA (2011) Inferring colocation and conversational networks using privacy-sensitive audio. ACM Trans Intell Syst Technol 2(1):1–4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carter T. Butts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Butts, C.T. Activity correlation spectroscopy: a novel method for inferring social relationships from activity data. Soc. Netw. Anal. Min. 7, 1 (2017). https://doi.org/10.1007/s13278-016-0419-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13278-016-0419-9

Keywords

Navigation