Skip to main content

Advertisement

Log in

A comparative study of features selection for skin lesion detection from dermoscopic images

  • Review Article
  • Published:
Network Modeling Analysis in Health Informatics and Bioinformatics Aims and scope Submit manuscript

Abstract

Melanoma is rare and mainly considered as the dangerous category of skin cancer. Many researchers proposed diverse efficient techniques for melanoma detection. The main focus of this research is: (1) to discuss the traditional clinical methods for diagnosing skin cancer melanoma, and (2) to review the existing researcher’s attempts in response the critical and challenging task is features selection and extraction for skin cancer melanoma detection from dermoscopy images. This research will also be helpful to recognize the research background of skin cancer melanoma detection through image processing techniques. This cannot be done without a broad literature survey. The literature survey was performed keeping the main category as skin cancer melanoma and the survey included articles, journals, and conferences papers. To perform this study, different databases are considered. All of these databases cover medical image processing and technical literature. To conclude the review, some graphs and tables are presented which perform the comparison between existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DNA:

Deoxyribonucleic acid

UVA:

Ultraviolet A

UVB:

Ultraviolet B

MRI:

Magnetic resonance imaging

OCT:

Optical coherence tomography

CLSM:

Confocal laser scanning microscopy

ELM:

Epiluminescence microscopy

ABCDE:

Asymmetry, border, color, diameter, and evolving

CASH:

Color, architecture, symmetry, and homogeneity

CADx:

Computer-aided diagnosis system

SIFT:

Scale-invariant feature transform

LBP:

Local binary pattern

RGB:

Red, green, blue

HSB:

Hue, saturation, brightness

HSL:

Hue, saturation, lightness

HSV:

Hue, saturation, value

YUV:

Luminance, two chrominance

YCbCr:

Luminance, chrominance

CMYK:

Cyan, magenta, yellow, black

OOP:

Opponent

SIFT:

Scale invariant feature transform

GLCM:

Gray level co-occurrence matrix

GMRF:

Gaussian Markov random field

AR:

Autoregressive

fBm:

Fractional brownian motion

PCA:

Principal component analysis

WPT:

Wavelet packet transform

KNN:

K-nearest neighbor

ANN:

Artificial neural network

SVM:

Support vector machine

MLP:

Multilayer perceptron

RABGLD:

Regional average binary gray level difference co-occurrence matrix

SFTA:

Segmentation based fractal texture analysis

CNN’s:

Convolutional neural networks

DCNNs:

Deep convolutional neural networks

References

  • Abbas Q, Celebi M E, Serrano C, Fondo I (2013) Pattern classification of dermoscopy images: a perceptually uniform mod,” vol 46, pp. 86–97

  • Abbas Q, Garcia IF, Emre Celebi M, Ahmad W (2013) A perceptually oriented method for contrast enhancement and segmentation of dermoscopy images. Skin Res Technol 19(1):1–8

    Google Scholar 

  • Abbas N, Saba T, Mohamad D, Rehman A, Almazyad AS, Al-Ghamdi JS (2018) Machine aided malaria parasitemia detection in Giemsa-stained thin blood smears. Neural Comput Appl 29(3):803–818. https://doi.org/10.1007/s00521-016-2474-6

    Article  Google Scholar 

  • Abbes W, Sellami D (2016) Control, and E. E. Departmement. High-level features for automatic skin lesions neural network based classification. Int Image Process Appl Syst Conf, pp 1–7

  • Abuzaghleh O, Faezipour M, Barkana BD (2015) A comparison of feature sets for an automated skin lesion analysis system for melanoma early detection and prevention. In: 2015 IEEE Long Island Systems, Applications and Technology Conference, LISAT 2015

  • Afza F, Khan MA, Sharif M, Rehman A (2019) Microscopic skin laceration segmentation and classification: a framework of statistical normal distribution and optimal feature selection. Microsc Res Tech. https://doi.org/10.1002/jemt.23301

    Article  Google Scholar 

  • Ahmed Sheha M (2015) Pigmented skin lesion diagnosis by automated imaging system. J Bioeng Biomed Sci 6(1):242–254

    Google Scholar 

  • Alkawaz MH, Sulong G, Saba T, Rehman A (2016) Detection of copy-move image forgery based on discrete cosine transform. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2663-3

    Article  Google Scholar 

  • American Cancer Society (2017) Cancer Facts and Figures 2017. Genes Dev 21(20):2525–2538

    Google Scholar 

  • Amin J, Sharif M, Yasmin M, Saba T, Anjum MA, Fernandes SL (2019) A new approach for brain tumor segmentation and classification based on score level fusion using transfer learning. J Med Syst 43(11):326

    Google Scholar 

  • Barata C, Marques JS, Rozeira J (2013) Advances in visual computing. 8034:0–10

  • Barata C, Ruela M, Mendonça T, Marques JS (2014) A bag-of-features approach for the classification of melanomas in dermoscopy images: the role of color and texture descriptors

  • Barata C, Ruela M, Francisco M, Mendonca T, Marques JS (2014b) Two systems for the detection of melanomas in dermoscopy images using texture and color features. IEEE Syst J 8(3):965–979

    Google Scholar 

  • Barata C, Celebi ME, Marques JS (2015) Improving dermoscopy image classification using color constancy. IEEE J Biomed Heal Inf 19(3):1146–1152

    Google Scholar 

  • Barzegari M, Ghaninezhad H, Mansoori P, Taheri A, Naraghi ZS, Asgari M (2005) Computer-aided dermoscopy for diagnosis of melanoma. BMC Dermatol. 5:1–4

    Google Scholar 

  • Bi L, Kim J, Ahn E, Feng D (2017) Automatic skin lesion analysis using large-scale dermoscopy images and deep residual networks. 9 Isic 2017, pp 6–9

  • Burdon-Jones D, Thomas P, Baker R (2010) Quality of life issues in nonmetastatic skin cancer. Br J Dermatol 162(1):147–151

    Google Scholar 

  • Capdehourat G, Corez A, Bazzano A, Musé P 2009 Pigmented skin lesions classification using dermatoscopic images. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5856 LNCS, pp 537–544

  • Celebi ME et al (2007) A methodological approach to the classification of dermoscopy images. Comput Med Imaging Graph 31(6):362–373

    Google Scholar 

  • Celebi ME et al (2008) Automatic detection of blue-white veil and related structures in dermoscopy images. Comput Med Imaging Graph 32(8):670–677

    Google Scholar 

  • Celebi ME, Iyatomi H, Schaefer G (2009) Contrast enhancement in dermoscopy images by maximizing a histogram bimodality measure. Proc. Int. Conf. Image Process. ICIP, pp 2601–2604

  • Chatterjee S, Dey D, Munshi S (2018) Optimal selection of features using wavelet fractal descriptors and automatic correlation bias reduction for classifying skin lesions. Biomed Signal Process Control 40:252–262

    Google Scholar 

  • Clausi DA, Deng H (2005) Design-based texture feature fusion using Gabor filters and co-occurrence probabilities. IEEE Trans Image Process 14(7):925–936

    Google Scholar 

  • Codella N (2015) Accurate and scalable system for automatic detection of malignant melanoma. Dermoscopy Image Anal 1–52

  • Coleman AJ, Richardson TJ, Orchard G, Uddin A, Choi MJ, Lacy KE (2013) Histological correlates of optical coherence tomography in non-melanoma skin cancer. Skin Res Technol 19(1):10–19

    Google Scholar 

  • Cudek P, Hippe ZS (2015) Melanocytic skin lesions: A new approach to color assessment. In: Proc.-2015 8th Int. Conf. Hum. Syst. Interact. HSI 2015, pp 99–101

  • Daniel Jensen J, Elewski BE (2015) The ABCDEF Rule: Combining the “ABCDE Rule” and the “Ugly Duckling Sign” in an effort to improve patient self-screening examinations. J Clin Aesthet Dermatol 8(2):15

    Google Scholar 

  • Di Leo G, Paolillo A, Sommella P, Fabbrocini G, Rescigno O (2010) A software tool for the diagnosis of melanomas. IEEE IMTC, pp 886–891

  • Di Leo G, Paolillo A, Sommella P, Fabbrocini G (2010) Automatic diagnosis of melanoma: a software system based on the 7-point check-list. In: Proc. Annu. Hawaii Int. Conf. Syst. Sci., pp 1–10

  • Dzubay JA et al (2014) An image analysis algorithm based on the hue saturation density transformation, an important tool for melanoma immunotherapy research. J Immunother Cancer 2(Suppl 3):P134

    Google Scholar 

  • Gaelle Mohamod S, Kasim (2014) Council for innovative research. J Adv Chem 10(1):2146–2161

  • Garnavi R, Aldeen M, Bailey J (2012) Computer-aided diagnosis of melanoma using border- and wavelet-texture analysis. IEEE Trans Inf Technol Biomed 16(6):1239–1252

    Google Scholar 

  • Gerger A, Hofmann-Wellenhof R, Samonigg H, Smolle J (2009) In vivo confocal laser scanning microscopy in the diagnosis of melanocytic skin tumours. Br J Dermatol 160(3):475–481

    Google Scholar 

  • Glaister J, Wong A, Clausi DA (2014) Segmentation of skin lesions from digital images using joint statistical texture distinctiveness. IEEE Trans Biomed Eng 61(4):1220–1230

    Google Scholar 

  • Grana C, Pellacani G, Cucchiara R, Seidenari S (2003) Polarized light surface microscopic images of pigmented skin lesions. IEEE Trans Med Imaging 22(8):959–964

    Google Scholar 

  • Haji MS, Alkawaz MH, Rehman A, Saba T (2019) Content-based image retrieval: a deep look at features prospectus. Int J Comput Vision Robot 9(1):14–38

    Google Scholar 

  • Hameed N, Ruskin A, Hassan KA, Hossain MA (2016) A comprehensive survey on image-based computer aided diagnosis systems for skin cancer. In: 10th international conference on software, knowledge, information management & applications (SKIMA)

  • Haron H, Rehman A, Wulandhari LA, Saba T (2011) Improved vertex chain code based mapping algorithm for curve length estimation. J Comput Sci 7(5):736–743

    Google Scholar 

  • Hasan MJ, Uddin J, Pinku SN (2017) A novel modified SFTA approach for feature extraction. In: 2016 3rd Int. Conf. Electr. Eng. Inf. Commun. Technol. iCEEiCT 2016, pp. 1–5

  • Iqbal S, Khan MUG, Saba T, Rehman A (2017) Computer assisted brain tumor type discrimination using magnetic resonance imaging features. Biomed Eng Lett 8(1):5–28. https://doi.org/10.1007/s13534-017-0050-3

    Article  Google Scholar 

  • Iqbal S, Ghani MU, Saba T, Rehman A (2018) Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN). Microsc Res Tech 81(4):419–427. https://doi.org/10.1002/jemt.22994

    Article  Google Scholar 

  • Iqbal S, Khan MUG, Saba T, Mehmood Z, Javaid N, Rehman A, Abbasi R (2019) Deep learning model integrating features and novel classifiers fusion for brain tumor segmentation. Microsc Res Tech. https://doi.org/10.1002/jemt.23281

    Article  Google Scholar 

  • Isasi AG, Zapirain BG, Zorrilla A (2011) Melanomas non-invasive diagnosis application based on the ABCD rule and pattern recognition image processing algorithms. Comput Biol Med 41(9):742–755

    Google Scholar 

  • Iyatomi H et al (2008) An improved Internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm. Comput Med Imaging Graph 32(7):566–579

    Google Scholar 

  • Iyatomi H, Celebi ME, Schaefer G, Tanaka M (2011) Automated color calibration method for dermoscopy images. Comput Med Imaging Graph 35(2):89–98

    Google Scholar 

  • Jadooki S, Mohamad D, Saba T, Almazyad AS, Rehman A (2016) Fused features mining for depth-based hand gesture recognition to classify blind human communication. Neural Comput Appl 28(11):3285–3294. https://doi.org/10.1007/s00521-016-2244-5

    Google Scholar 

  • Jafari MH et al (2016) Skin lesion segmentation in clinical images using deep learning. 2016 23rd Int. Conf. Pattern Recognit., pp 337–342

  • Jamal A, Hazim Alkawaz M, Rehman A, Saba T (2017) Retinal imaging analysis based on vessel detection. Microsc Res Tech 80(17):799–811

    Article  Google Scholar 

  • Jaworek-Korjakowska J, Kłeczek P (2016) Automatic classification of specific melanocytic lesions using artificial intelligence. Biomed Res Int

  • Johr RH (2002) Dermoscopy: alternative melanocytic algorithms—the ABCD rule of dermatoscopy, menzies scoring method, and 7-point checklist. Clin Dermatol 20(3):240–247

    Google Scholar 

  • Kashihara D, Carper K (2012) National heatlh care expenses in the U.S. Civilian noninstitutionalized population, 2009. Stat. Br.# 355-Agency Healthc. Res. Qual. Rockville, MD, vol. 355, no. January, pp 1–8

  • Khan MA, Sharif M, Javed MY, Akram T, Yasmin M, Saba T (2017) License number plate recognition system using entropy-based features selection approach with SVM. IET Image Process 12(2):200–209

    Google Scholar 

  • Khan MA, Sharif Akram T, Saba T (2019a) Construction of saliency map and hybrid set of features for efficient segmentation and classification of skin lesion. Microsc Res Tech. https://doi.org/10.1002/jemt.23220

    Article  Google Scholar 

  • Khan SA, Nazir M, Khan MA et al (2019b) Lungs nodule detection framework from computed tomography images using support vector machine. Microsc Res Tech 82:1256–1266. https://doi.org/10.1002/jemt.23275

    Article  Google Scholar 

  • Khan MA, Sharif M, Akram T, Raza M, Saba T, Rehman A (2020) Hand-crafted and deep convolutional neural network features fusion and selection strategy: an application to intelligent human action recognition. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2019.105986

    Article  Google Scholar 

  • Kittler H, Seltenheim M, Dawid M, Pehamberger H, Wolff K, Binder M (1999) Morphologic changes of pigmented skin lesions: a useful extension of the ABCD rule for dermatoscopy. J Am Acad Dermatol 40(4):558–562

    Google Scholar 

  • Koehler MJ, Lange-Asschenfeldt S, Kaatz M (2011) Non-invasive imaging techniques in the diagnosis of skin diseases. Expert Opin Med Diagn 5(5):425–440

    Google Scholar 

  • Husham A, Alkawaz MH, Saba T, Rehman A, Alghamdi JS (2016) Automated nuclei segmentation of malignant using level sets. Microsc Res Tech 79(10):993–997. https://doi.org/10.1002/jemt.22733

    Article  Google Scholar 

  • Lorber A et al (2009) Correlation of image analysis features and visual morphology in melanocytic skin tumours using in vivo confocal laser scanning microscopy. Skin Res Technol 15(2):237–241

    Google Scholar 

  • Losina E et al (2007) Visual screening for malignant melanoma: a cost-effectiveness analysis. Arch Dermatol 143(1):21–28

    Google Scholar 

  • Ma Z, Tavares JMRS (2016) A novel approach to segment skin lesions in dermoscopic images based on a deformable model. IEEE J Biomed Heal Inf 20(2):615–623

    Google Scholar 

  • Ma Z, Tavares JMRS (2017) Effective features to classify skin lesions in dermoscopic images. Expert Syst Appl 84:92–101

    Google Scholar 

  • Madooei A, Drew MS, Sadeghi M, Atkins MS (2013) Automatic detection of blue-white veil by discrete colour matching in dermoscopy images. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8151, no. August 2015

  • Maglogiannis I, Doukas CN (2009) Overview of advanced computer vision systems for skin lesions characterization. IEEE Trans Inf Technol Biomed 13(5):721–733

    Google Scholar 

  • Masood A, Al-Jumaily AA (2013) Computer aided diagnostic support system for skin cancer: a review of techniques and algorithms. Int J Biomed Imaging

  • Mehta A, Parihar AS (2015) Supervised classification of dermoscopic images using optimized fuzzy clustering based multi-layer feed-forward neural network

  • Mehmood Z, Abbas F, Mahmood T et al (2018) Content-based image retrieval based on visual words fusion versus features fusion of local and global features. Arab J Sci Eng. https://doi.org/10.1007/s13369-018-3062-0

    Article  Google Scholar 

  • Mogensen M, Thrane L, Jørgensen TM, Andersen PE, Jemec GBE (2009) OCT imaging of skin cancer and other dermatological diseases. J Biophotonics 2(6–7):442–451

    Google Scholar 

  • Mohanaiah P, Sathyanarayana P, Gurukumar L (2013) Image texture feature extraction using GLCM approach. Int J Sci Res Publ 3(5):1–5

    Google Scholar 

  • Mughal B, Muhammad N, Sharif M, Saba T, Rehman A (2017) Extraction of breast border and removal of pectoral muscle in wavelet, domain. Biomed Res 28(11):5041–5043

    Google Scholar 

  • Mughal B, Muhammad N, Sharif M, Rehman A, Saba T (2018) Removal of pectoral muscle based on topographic map and shape-shifting silhouette. BMC Cancer. https://doi.org/10.1186/s12885-018-4638-5

    Article  Google Scholar 

  • Muldoon TJ, Burgess SA, Chen BR, Ratner D, Hillman EMC (2012) Analysis of skin lesions using laminar optical tomography. Biomed Opt Express 3(7):1701

    Google Scholar 

  • Nasir M, Khan MA, Sharif M, Lali IU, Saba T, Iqbal T (2018) An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach. Microsc Res Tech 81(6):528–543. https://doi.org/10.1002/jemt.23009

    Article  Google Scholar 

  • Oliveira RB, Marranghello N, Pereira AS, Tavares JMRS (2016a) A computational approach for detecting pigmented skin lesions in macroscopic images. Expert Syst Appl 61(November):53–63

    Google Scholar 

  • Oliveira RB, Filho ME, Ma Z, Papa JP, Pereira AS, Tavares JMRS (2016b) Computational methods for the image segmentation of pigmented skin lesions: a review. Comput Methods Programs Biomed 131:127–141

    Google Scholar 

  • Oliveira RB, Pereira AS, Tavares JMRS (2018) Computational diagnosis of skin lesions from dermoscopic images using combined features

  • Oliveira RB, Papa JP, Pereira AS, Tavares JMRS (2018b) Computational methods for pigmented skin lesion classification in images: review and future trends. Neural Comput Appl 29(3):613–636

    Google Scholar 

  • Oliveira RB, Pereira AS, Tavares JMRS (2018c) Pattern recognition in macroscopic and dermoscopic images for skin lesion diagnosis. Lect Notes Comput Vis Biomech 27:504–514

    Google Scholar 

  • Pathan S, Prabhu KG, Siddalingaswamy PC (2018) Techniques and algorithms for computer aided diagnosis of pigmented skin lesions—a review. Biomed Signal Process Control 39(October):237–262

    Google Scholar 

  • Quintana J, Garcia R, Neumann L (2011) A novel method for color correction in epiluminescence microscopy. Comput Med Imaging Graph 35(7–8):646–652

    Google Scholar 

  • Rahim MSM, Norouzi A, Rehman A, Saba T (2017a) 3D bones segmentation based on CT images visualization. Biomed Res 28(8):3641–3644

    Google Scholar 

  • Rahim MSM, Rehman A, Kurniawan F, Saba T (2017b) Ear biometrics for human classification based on region features mining. Biomed Res 28(10):4660–4664

    Google Scholar 

  • Rastgoo M, Garcia R, Morel O, Marzani F (2015) Automatic differentiation of melanoma from dysplastic nevi. Comput Med Imaging Graph 43:44–52

    Google Scholar 

  • Rehman A, Saba T (2013) An intelligent model for visual scene analysis and compression. Int Arab J Inform Technol 10(13):126–136

    Google Scholar 

  • Robertson FML, Fitzgerald L (2017) Skin cancer in the youth population of the United Kingdom. J Cancer Policy 12:67–71

    Google Scholar 

  • Rosado L, Vasconcelos MJM, Castro R, Tavares JMRS (2015) From dermoscopy to mobile teledermatology. Dermoscopy Image Anal, pp 385–418

  • Ruela M, Barata C, Marques JS, Rozeira J (2017) A system for the detection of melanomas in dermoscopy images using shape and symmetry features. Comput Methods Biomech Biomed Eng Imaging Vis 5(2):127–137. https://doi.org/10.1080/21681163.2015.1029080

    Article  Google Scholar 

  • Saba T (2019) Automated lung nodule detection and classification based on multiple classifiers voting. Microsc Res Tech. https://doi.org/10.1002/jemt.23326

    Article  Google Scholar 

  • Saba T, Khan MA, Rehman A et al (2019a) Region extraction and classification of skin cancer: a heterogeneous framework of deep CNN features fusion and reduction. J Med Syst 43:289. https://doi.org/10.1007/s10916-019-1413-3

    Article  Google Scholar 

  • Saba T, Sameh A, Khan F, Shad SA, Sharif M (2019b) Lung nodule detection based on ensemble of hand crafted and deep features. J Med Syst 43(12):332

    Google Scholar 

  • Saba T, Mohamed AS, El-Affendi M, Amin J, Sharif M (2020) Brain tumor detection using fusion of hand crafted and deep learning features. Cogn Syst Res 59:221–230

    Google Scholar 

  • Sadeghi M, Razmara M, Lee TK, Atkins MS (2011) A novel method for detection of pigment network in dermoscopic images using graphs. Comput Med Imaging Graph 35(2):137–143

    Google Scholar 

  • Sadeghi M, Lee TK, McLean D, Lui H, Atkins MS (2013) Detection and analysis of irregular streaks in dermoscopic images of skin lesions. IEEE Trans Med Imaging 32(5):849–861

    Google Scholar 

  • Sanchez J et al. (2013) Image classification with the Fisher vector : theory and practice

  • Satheesha TY, Satyanarayana D, Prasad MNG, Dhruve KD (2016) Melanoma is skin deep: a 3d reconstruction technique for computerized dermoscopic skin lesion classification. IEEE J Transl Eng Heal Med 5(December):2017

    Google Scholar 

  • Schaefer G, Rajab MI, Emre Celebi M, Iyatomi H (2011) Colour and contrast enhancement for improved skin lesion segmentation. Comput Med Imaging Graph 35(2):99–104

    Google Scholar 

  • Sharif M, Khan MA, Akram T, Javed MY, Saba T, Rehman A (2017) A framework of human detection and action recognition based on uniform segmentation and combination of Euclidean distance and joint entropy-based features selection. EURASIP J Image Video Proc 2017:89

    Google Scholar 

  • Sheha MA, Mabrouk MS, Sharawy A (2012) Automatic detection of melanoma skin cancer using texture analysis. Int J Comput Appl 4220:975–8887

    Google Scholar 

  • Sheha MA, Sharwy A, Mabrouk MS (2014) Pigmented skin lesion diagnosis using geometric and chromatic features. 2014 Cairo Int. Biomed. Eng. Conf., pp 115–120

  • Shoieb DA, Youssef SM, Aly WM (2016) Computer-aided model for skin diagnosis using deep learning. J Image Gr 4(2):122–129

    Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30

    Google Scholar 

  • Singh D, Gautam D, Ahmed M (2014) Detection techniques for melanoma diagnosis: A performance evaluation. In: 2014 Int. Conf. Signal Propag. Comput. Technol. ICSPCT, pp 567–572

  • Smaoui N, Bessassi S (2013) A developed system for melanoma diagnosis. Int J Comput Vis Signal Process 3(1):10–17

    Google Scholar 

  • Tomatis S et al (2003) Automated melanoma detection: multispectral imaging and neural network approach for classification. Med Phys 30(2):212–221

    Google Scholar 

  • Tomatis S et al (2005) Automated melanoma detection with a novel multispectral imaging system: results of a prospective study. Phys Med Biol 50(8):1675–1687

    Google Scholar 

  • Vs A, Hema S (2017) Comparison of various feature sets for skin lesion analysis 2(12):137–139

  • Wighton P, Lee TK, Lui H, McLean DI, Atkins MS (2011) Generalizing common tasks in automated skin lesion diagnosis. IEEE Trans Inf Technol Biomed

  • Woo S, Lee C (2017) Feature extraction for deep neural networks based on decision boundaries. Proc SPIE Int Soc Opt Eng 10203:1–6

    Google Scholar 

  • Woo S, Lee C (2018) Incremental feature extraction based on decision boundaries. Pattern Recognit 77:65–74

    Google Scholar 

  • Yang J, Guo J ( 2011) Image texture feature extraction method based on regional average binary gray level difference co-occurrence matrix. In: Virtual Real Vis (ICVRV), 2011 Int Conf vol 10, no. 3, pp 239–242

  • Yoshinari K, Murahira K, Hoshi Y, Taguchi (2013) Color image enhancement in improved HSI color space. ISPACS 2013—2013 Int. Symp. Intell. Signal Process. Commun. Syst., pp 429–434

  • Yousuf M, Mehmood Z, Habib HA et al (2018) A novel technique based on visual words fusion analysis of sparse features for effective content-based image retrieval. Math Prob Eng 2018:2134395. https://doi.org/10.1155/2018/2134395

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by Artificial Intelligence and Data Analytics (AIDA) Lab Prince Sultan University Riyadh Saudi Arabia. Aaaditionally, this work is supported by the School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia. Moreover, the authors are also grateful for the support of the Department of Computer Science, Lahore College for Women University, Jail Road, Lahore 54000, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Rehman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javed, R., Rahim, M.S.M., Saba, T. et al. A comparative study of features selection for skin lesion detection from dermoscopic images. Netw Model Anal Health Inform Bioinforma 9, 4 (2020). https://doi.org/10.1007/s13721-019-0209-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13721-019-0209-1

Keywords

Navigation