Skip to main content

Advertisement

Log in

Identification of key genes, pathways, and associated comorbidities in chikungunya infection: insights from system biology analysis

  • Original Article
  • Published:
Network Modeling Analysis in Health Informatics and Bioinformatics Aims and scope Submit manuscript

Abstract

The chikungunya (CHIKV) viral infection is a global health burden characterized by the neurologic complications with CHIKV infection. CHIKV has relation with Ebola, Dengu, Semlikhi Forest Virus (SLFV) characterized by inflammations in these viral diseases. The present study aimed to discover molecular signatures for comorbidity of viral infections. So, in our study, we have analyzed transcriptome datasets related to viral diseases namely, CHIKV, Ebola, Dengu, SLFV, and inflammatory disorder “Pain” associated with these viral diseases. We built relationship networks based on the CHIKV virus after identifying shared genes among the illnesses mentioned above. After that we also constructed protein-protein interaction network (PPI) considering the differentially expressed genes (DEGs) of CHKIV and identified hub genes based on topological analysis. A total 500 DEGs was identified associated with CHIKV infections induced transcriptomic alterations. It was also found that 105 genes were common in both CHIKV and ebola infections. However, CHIKV shared under 24 significant transcripts with other alphaviruse infections. We also found that 49 genes shared with pain. In our analysis, we identified the relation of these viruses, common genes among them, comorbidities of CHIKV and Hub genes, significant pathways of CHIKV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aiken WD, Anzinger JJ (2015) Chikungunya virus infection and acute elevation of serum prostate-specific antigen. Case Rep Urol 2015:120535

    Google Scholar 

  • Amberger J, Bocchini C, Hamosh A (2011) A new face and new challenges for Online Mendelian Inheritance in Man (OMIM®). Hum Mutat 32(5):564–567

    Article  Google Scholar 

  • Badawi A, Ryoo SG, Vasileva D, Yaghoubi S (2018) Prevalence of chronic comorbidities in chikungunya: a systematic review and meta-analysis. Int J Infect Dis 67:107–113

    Article  Google Scholar 

  • Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M et al (2012) NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res 41(D1):D991–D995

    Article  Google Scholar 

  • Bordi L, Caglioti C, Lalle E, Castilletti C, Capobianchi MR (2015) Chikungunya and its interaction with the host cell. Curr Trop Med Rep 2(1):22–29

    Article  Google Scholar 

  • Brazier Y (2015) Mosquito-borne chikungunya virus causes severe brain inflammation. https://www.medicalnewstoday.com/articles/303213.php

  • Cardona-Ospina JA, Villamil-Gomez WE (2015) Estimating the burden of disease and the economic cost attributable to chikungunya, Colombia, 2014. Trans R Soc Trop Med Hyg 3:793–802 (JCCCHDRMA)

    Article  Google Scholar 

  • Casswell J (2019) Investigating the role of host TTR-RBPs during SFV4 and MHV-68 infection. The University of Liverpool, Liverpool

    Google Scholar 

  • Chen LH, Wilson ME (2010) Dengue and Chikungunya infections in travelers. Curr Opin Infect Dis 23(5):438–444

    Article  Google Scholar 

  • Clémentine S, Frédérik S, TCYMFCSKMLAMLAM (2013) Chikungunya virus-associated long-term arthralgia: a 36-month prospective longitudinal study. PLoS Negl Trop Dis 7:e2137

    Article  Google Scholar 

  • Fraisier C, Koraka P, BMBMGSPMLSOAMBCLALK (2014) analysis of mouse brain proteome alterations following Chikungunya virus infection before and after appearance of clinical symptoms. PLoS One 9:e91397

    Article  Google Scholar 

  • Fros JJ, Major LD, Scholte FE, Gardner J, van Hemert MJ, Suhrbier A, Pijlman GP (2015) Chikungunya virus non-structural protein 2-mediated host shut-off disables the unfolded protein response. J Gen Virol 96(3):580–589

    Article  Google Scholar 

  • Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL (2007) The human disease network. Proc Natl Acad Sci 104(21):8685–8690

    Article  Google Scholar 

  • Henß L, Beck S, Tea W (2016) Suramin is a potent inhibitor of chikungunya and Ebola virus cell entry. Virol J 13:1–8

    Article  Google Scholar 

  • Hossain MA, Asa TA, Islam SMS, Hussain MS, Moni MA (2019a) Identification of genetic association of thyroid cancer with Parkinson’s disease, osteoporosis, chronic heart failure, chronic kidney disease, type 1 diabetes and type 2 diabetes. In: 2019 5th International Conference on Advances in Electrical Engineering (ICAEE), pp 832–837. IEEE

  • Hossain MA, Asa TA, Rahman MR, Moni MA (2019b) Network-based approach to identify key candidate genes and pathways shared by thyroid cancer and chronic kidney disease. Inform Med Unlocked 16:100240

    Article  Google Scholar 

  • Hossain MA, Islam SMS, Quinn JM, Huq F, Moni MA (2019c) Machine learning and bioinformatics models to identify gene expression patterns of ovarian cancer associated with disease progression and mortality. J Biomed Inform 100:103313

    Article  Google Scholar 

  • Hossain M, Asa TA, Rahman M, Uddin S, Moustafa AA, Quinn JM, Moni MA et al (2020a) Network-based genetic profiling reveals cellular pathway differences between follicular thyroid carcinoma and follicular thyroid adenoma. Int J Environ Res Public Health 17(4):1373

    Article  Google Scholar 

  • Hossain MA, Asa TA, Huq F, Quinn JM, Moni MA (2020b) A network-based approach to identify molecular signatures and comorbidities of thyroid cancer. In: Proceedings of international joint conference on computational intelligence, pp 235–246. Springer

  • Hossain MA, Islam SMS, Asa TA, Hussain MS, Rahman MR, Moustafa A, Moni MA (2020c) Identification of genetic links of thyroid cancer to the neurodegenerative and chronic diseases progression: insights from systems biology approach. In: Proceedings of International Joint Conference on Computational Intelligence, pp 263–274. Springer

  • Jaffar Hoarau JJ, Bandjee MC (2010) Persistent chronic inflammation and infection by chikungunya arthritogenic alphavirus in spite of a robust host immune response. J Immunol 184:5914–5927 (KTPDTLPYGDBea)

    Article  Google Scholar 

  • Jelke J, Fros GPP (2016) Alphavirus infection: host cell shut-off and inhibition of antiviral responses. Viruses 8(6):166

    Article  Google Scholar 

  • Karlas A, Berre S, Couderc T, Varjak M, Braun P, Meyer M, Gangneux N, Karo-Astover L, Weege F, Raftery M et al (2016) A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs. Nat Commun 7(1):1–14

    Article  Google Scholar 

  • Kash JC, Walters KA, Kindrachuk J, Baxter D, Scherler K, Janosko KB, Adams RD, Herbert AS, James RM, Stonier SW et al (2017) Longitudinal peripheral blood transcriptional analysis of a patient with severe Ebola virus disease. Sci Transl Med 9(385)

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9(4):299–306

    Article  Google Scholar 

  • Kunes P, Holubcova Z, Kolackova M, Krejsek J (2012) Pentraxin 3 (PTX 3): an endogenous modulator of the inflammatory response. Mediat Inflamm 2012:920517

    Article  Google Scholar 

  • Kwissa M, Nakaya HI, Onlamoon N, Wrammert J, Villinger F, Perng GC, Yoksan S, Pattanapanyasat K, Chokephaibulkit K, Ahmed R et al (2014) Dengue virus infection induces expansion of a CD14+ CD16+ monocyte population that stimulates plasmablast differentiation. Cell Host Microbe 16(1):115–127

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  Google Scholar 

  • Marcin K, Nakaya HI, Onlamoon N, Jens W, Francois V, Perng GC, Yoksan S, Pattanapanyasat K, Chokephaibulkit K, Rafi A et al (2014) Dengue virus infection induces expansion of a CD14 CD16 monocyte population that stimulates plasmablast differentiation

  • Moni M, Lio P (2016) Infectome, diseasome and comorbidities of Zika infection. Int J Infect Dis 53:14

    Article  Google Scholar 

  • Moni MA, Lio P (2017) Genetic profiling and comorbidities of Zika infection. J Infect Dis 216(6):703–712

    Article  Google Scholar 

  • Mutsuddy P, Tahmina Jhora S, Shamsuzzaman AKM, Kaisar S, Khan MNA (2019) Dengue situation in Bangladesh: an epidemiological shift in terms of morbidity and mortality. Can J Infect Dis Med Microbiol 2019:3516284

    Article  Google Scholar 

  • Navratil V, de Chassey B, Combe CR, Lotteau V (2011) When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases. BMC Syst Biol 5(1):1

    Article  Google Scholar 

  • Oliver GF, Carr JM, Smith JR (2019) Emerging infectious uveitis: chikungunya, dengue, Zika and Ebola: a review. Clin Exp Ophthalmol 47(3):372–380

    Article  Google Scholar 

  • Pialoux G, Gaüzère BA, Jauréguiberry S, Strobel M (2007) Chikungunya, an epidemic arbovirosis. Lancet Infect Dis 7(5):319–327

    Article  Google Scholar 

  • Poo YS, Rudd PA, GJWJLTCMea (2014) Multiple immune factors are involved in controlling acute and chronic chikungunya virus infection. PLoS Negl Trop Dis 8:e3354

    Article  Google Scholar 

  • Powers AMLC (2007) Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol 88:2363–2377

    Article  Google Scholar 

  • Rezza G (2014) Dengue and chikungunya: long-distance spread and outbreaks in naïve areas cardiovascular manifestations of the emerging dengue pandemic. Pathog Glob Health 108(8):349–355

    Article  Google Scholar 

  • Salam N, Mustafa S, Hafiz A, Chaudhary AA, Deeba F, Parveen S (2018) Global prevalence and distribution of coinfection of malaria, dengue and chikungunya: a systematic review. BMC Public Health 18(1):1–20

    Article  Google Scholar 

  • Segura-Cabrera A, García-Pérez CA, Guo X, Rodríguez-Pérez MA (2013) A viral-human interactome based on structural motif-domain interactions captures the human infectome. PloS One 8(8):e71526

    Article  Google Scholar 

  • Simon F, Javelle E (2015) French guidelines for the management of chikungunya (acute and persistent presentations). Med Mal Infect 45:243–263 (CABETOGGea)

    Article  Google Scholar 

  • Smith SA, Beaulieu JM, Donoghue MJ (2009) Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. BMC Evol Biol 9(1):37

    Article  Google Scholar 

  • Suhrbier A, Jaffar-Bandjee M-C, Gasque P (2012) Arthritogenic alphaviruses—an overview. Nat Rev Rheumatol 8:420–429

    Article  Google Scholar 

  • Toegel S, Weinmann D (2016) Galectin-1 couples glycobiology to inflammation in osteoarthritis through the activation of an NF-B-regulated gene network. J Immunol 196(4):1910–1921 (ASWSea)

    Article  Google Scholar 

  • Van Huizen E, McInerney GM (2020) Activation of the PI3K-AKT pathway by old world alphaviruses. Cells 9(4):970

    Article  Google Scholar 

  • Weaver SC, Osorio JE (2012) Chikungunya virus and prospects for a vaccine. Expert Rev Vaccines 11:1087–1101 (LJCRSD)

    Article  Google Scholar 

  • Werneke S (2013) A role for interferon stimulated gene-15 (ISG15) during chikungunya virus infection

  • Yacoub S, Wertheim H, Simmons CP, Screaton G, Wills B (2014) Cardiovascular manifestations of the emerging dengue pandemic. Nat Rev Cardiol 11(6):335

    Article  Google Scholar 

  • Zhou G, Soufan O, Ewald J, Hancock RE, Basu N, Xia J (2019) NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 47(W1):W234–W241

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingjun Zhu or Md. Ali Hossain.

Ethics declarations

Conflict of interest

We have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Wang, X., Asa, T.A. et al. Identification of key genes, pathways, and associated comorbidities in chikungunya infection: insights from system biology analysis. Netw Model Anal Health Inform Bioinforma 10, 57 (2021). https://doi.org/10.1007/s13721-021-00331-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13721-021-00331-5

Keywords

Navigation