Learning Bayesian networks with low inference complexity

Benjumeda Barquita, Marco ORCID: https://orcid.org/0000-0001-6681-1699, Larrañaga Múgica, Pedro María ORCID: https://orcid.org/0000-0003-0652-9872 and Bielza Lozoya, María Concepción ORCID: https://orcid.org/0000-0001-7109-2668 (2016). Learning Bayesian networks with low inference complexity. "Progress in Artificial Intelligence", v. 5 (n. 1); pp. 15-26. ISSN 2192-6360. https://doi.org/10.1007/s13748-015-0070-0.

Descripción

Título: Learning Bayesian networks with low inference complexity
Autor/es:
Tipo de Documento: Artículo
Título de Revista/Publicación: Progress in Artificial Intelligence
Fecha: 2016
ISSN: 2192-6360
Volumen: 5
Número: 1
Materias:
ODS:
Palabras Clave Informales: Probabilistic graphical models; Bayesian networks; Arithmetic circuits; Network polynomials; Structure learning; Thin models
Escuela: E.T.S. de Ingenieros Informáticos (UPM)
Departamento: Inteligencia Artificial
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[thumbnail of INVE_MEM_2015_227290.pdf]
Vista Previa
PDF (Portable Document Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (879kB) | Vista Previa

Resumen

One of the main research topics in machine learning nowadays is the improvement of the inference and learning processes in probabilistic graphical models. Traditionally, inference and learning have been treated separately, but given that the structure of the model conditions the inference complexity, most learning methods will sometimes produce inefficient inference models. In this paper we propose a framework for learning low inference complexity Bayesian networks. For that, we use a representation of the network factorization that allows efficiently evaluating an upper bound in the inference complexity of each model during the learning process. Experimental results show that the proposed methods obtain tractable models that improve the accuracy of the predictions provided by approximate inference in models obtained with a well-known Bayesian network learner.

Proyectos asociados

Tipo
Código
Acrónimo
Responsable
Título
Gobierno de España
TIN2013-41592-P
Sin especificar
Universidad Politécnica de Madrid
Aprendizaje de redes bayesianas con variables sin y con direccionalidad para descubrimiento de asociaciones, predicción multirespuesta y clustering
Comunidad de Madrid
S2013/ICE-2845
CASI - CAM
Aníbal Ramón Figueiras Vidal
Conceptos y Aplicaciones de los Sistemas Inteligentes
FP7
604102
HBP
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
The Human Brain Project
Gobierno de España
C080020-09
Sin especificar
Sin especificar
Cajal Blue Brain

Más información

ID de Registro: 41178
Identificador DC: https://oa.upm.es/41178/
Identificador OAI: oai:oa.upm.es:41178
Identificador DOI: 10.1007/s13748-015-0070-0
URL Oficial: https://doi.org/10.1007/s13748-015-0070-0
Depositado por: Memoria Investigacion
Depositado el: 20 Oct 2016 10:10
Ultima Modificación: 12 Feb 2025 11:46