Texto completo
Vista Previa |
PDF (Portable Document Format)
- Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (879kB) | Vista Previa |
Benjumeda Barquita, Marco ORCID: https://orcid.org/0000-0001-6681-1699, Larrañaga Múgica, Pedro María
ORCID: https://orcid.org/0000-0003-0652-9872 and Bielza Lozoya, María Concepción
ORCID: https://orcid.org/0000-0001-7109-2668
(2016).
Learning Bayesian networks with low inference complexity.
"Progress in Artificial Intelligence", v. 5
(n. 1);
pp. 15-26.
ISSN 2192-6360.
https://doi.org/10.1007/s13748-015-0070-0.
Título: | Learning Bayesian networks with low inference complexity |
---|---|
Autor/es: |
|
Tipo de Documento: | Artículo |
Título de Revista/Publicación: | Progress in Artificial Intelligence |
Fecha: | 2016 |
ISSN: | 2192-6360 |
Volumen: | 5 |
Número: | 1 |
Materias: | |
ODS: | |
Palabras Clave Informales: | Probabilistic graphical models; Bayesian networks; Arithmetic circuits; Network polynomials; Structure learning; Thin models |
Escuela: | E.T.S. de Ingenieros Informáticos (UPM) |
Departamento: | Inteligencia Artificial |
Licencias Creative Commons: | Reconocimiento - Sin obra derivada - No comercial |
Vista Previa |
PDF (Portable Document Format)
- Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (879kB) | Vista Previa |
One of the main research topics in machine learning nowadays is the improvement of the inference and learning processes in probabilistic graphical models. Traditionally, inference and learning have been treated separately, but given that the structure of the model conditions the inference complexity, most learning methods will sometimes produce inefficient inference models. In this paper we propose a framework for learning low inference complexity Bayesian networks. For that, we use a representation of the network factorization that allows efficiently evaluating an upper bound in the inference complexity of each model during the learning process. Experimental results show that the proposed methods obtain tractable models that improve the accuracy of the predictions provided by approximate inference in models obtained with a well-known Bayesian network learner.
ID de Registro: | 41178 |
---|---|
Identificador DC: | https://oa.upm.es/41178/ |
Identificador OAI: | oai:oa.upm.es:41178 |
Identificador DOI: | 10.1007/s13748-015-0070-0 |
URL Oficial: | https://doi.org/10.1007/s13748-015-0070-0 |
Depositado por: | Memoria Investigacion |
Depositado el: | 20 Oct 2016 10:10 |
Ultima Modificación: | 12 Feb 2025 11:46 |
Compartir