Skip to main content
Log in

A review on the coral reefs optimization algorithm: new development lines and current applications

  • Review
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

The simulation of biological processes has produced some of the most important meta-heuristics algorithms for optimization. Evolutionary algorithms were the first, and probably the most applied, algorithms coming from biological inspiration, but there have been many more, specially in the last few years. This paper describes a special class of evolutionary algorithms recently proposed, the coral reefs optimization algorithm (CRO), which simulates some specific biological processes that occur in real coral reefs. The simulation of these processes leads to an evolutionary algorithm in which similarities with Simulated Annealing have been introduced. Moreover, the inclusion of alternative processes occurring in coral reefs produces very effective co-evolution versions of the CRO algorithm, specially well suited for optimization problems with inherent variable length encodings, or able to co-evolve several exploration patterns within the same population. All these issues related to the CRO approach are thoroughly described in the paper, and also a fully description of the main applications of the algorithm in engineering optimization problems is given to close this first review on the CRO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Glover, F., Kochenberg, G.A. (eds) Handbook of Metaheuristics. Kluwer Academic Publisher, New York (2003)

  2. Luke, S.: Essentials of Metaheuristics, Lulu, 2nd edn (2013). http://cs.gmu.edu/~sean/book/metaheuristics/

  3. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evolut. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  4. Eiben, A.E., Smith, J. E.: Introduction to evolutionary computing. In: Natural Computing Series, 1st edn. Springer, New York (2003)

  5. Beyer, H.G., Schwefel, H.P.: Evolution strategies—a comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evolut. Comput. 3(2), 82–102 (1999)

    Article  Google Scholar 

  7. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dorigo, M., Maziezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating ants. IEEE Trans. Syst. Man Cybern. B 26(1), 29–41 (1996)

    Article  Google Scholar 

  9. Kephart, J.O.: A biologically inspired immune system for computers. In: Proceedings of the Artificial Life IV: The Fourth International Workshop on the Synthesis and Simulation of Living Systems. MIT Press, New York, pp. 130–139 (1994)

  10. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 4th IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

  11. Karaboga, D., Basturk, B.: On the performance of the artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8, 687–697 (2008)

    Article  Google Scholar 

  12. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1), 21–57 (2014)

    Article  Google Scholar 

  13. Mehrabian, A.R., Lucas, C.: A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform. 1, 355–366 (2006)

    Article  Google Scholar 

  14. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Proceedings of the Nature Inspired Cooperative Strategies for Optimization. Studies in Computational Intelligence, vol. 284, pp. 6574. Springer, New York (2010)

  15. Oftadeh, R., Mahjoob, M.J., Shariatpanahi, M.: A novel meta-heuristic optimization algorithm inspired by group hunting of animals: hunting search. Comput. Math. Appl. 60(7), 2087–2098 (2010)

    Article  MATH  Google Scholar 

  16. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proceedings of the World Conference on Nature & Biologically Inspired Computing, pp. 210–214 (2009)

  17. Cortés, P., García, J.M., Onieva, L.: Viral systems: a new bio-inspired optimisation approach. Comput. Oper. Res. 35(9), 2840–2860 (2008)

    Article  MATH  Google Scholar 

  18. Müller, S., Airaghi, S., Marchetto, J.: Optimization based on bacterial chemotaxis. IEEE Trans. Evolut. Comput. 6(1), 16–29 (2002)

    Article  Google Scholar 

  19. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22, 52–67 (2002)

    Article  Google Scholar 

  20. Wang, H., Lu, X., Zhang, X., Wang, Q., Deng, Y.: A bio-inspired method for the constrained shortest path problem. Sci. World J. 2014, art. ID 271280 (2014)

  21. Kirpatrick, D., Gerlatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  22. Castillo, P.A., Arenas, M.G., Rico, N., Mora, A.M., García-Sánchez, P., et al.: Determining the significance and relative importance of parameters of a simulated quenching algorithm using statistical tools. Appl. Intell. 37(2), 239–254 (2012)

    Article  Google Scholar 

  23. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)

    Article  MATH  Google Scholar 

  24. Kaveh, A., Mahdavi, V.R.: Colliding bodies optimization: a novel meta-heuristic method. Comput. Struct. 139, 18–27 (2014)

    Article  Google Scholar 

  25. Kaveh, A., Khayatazad, M.: A new meta-heuristic method: ray optimization. Comput. Struct. 112–113, 283–294 (2012)

    Article  Google Scholar 

  26. Alatas, B.: ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst. Appl. 38(10), 13170–13180 (2011)

    Article  Google Scholar 

  27. Birbil, S.I., Fang, S.C.: An electromagnetism-like mechanism for global optimization. J. Global Optim. 25, 263–282 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zheng, Y.J.: Water wave optimization: a new nature-inspired metaheuristic. Comput. Oper. Res. 55, 111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  30. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rao, R.V., Patel, V.: An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. Int. J. Ind. Eng. Comput. 3, 535–560 (2012)

    Google Scholar 

  32. Ray, T., Liew, K.M.: Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans. Evolut. Comput. 7(4), 386–396 (2003)

    Article  Google Scholar 

  33. Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 7, pp. 4661–4666 (2007)

  34. Simon, D.: Biogeography-based optimization. IEEE Trans. Evolut. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  35. Salcedo-Sanz, S., Del Ser, J., Landa-Torres, I., Gil-López, S., Portilla-Figueras, J.A.: The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems. Sci. World J. article ID 739768 (2014)

  36. Salcedo-Sanz, S., Del Ser, J., Landa-Torres, I., Gil-López, S., Portilla-Figueras, A.: The coral reefs optimization algorithm: an efficient meta-heuristic for solving hard optimization problems. In: Proceedings of the 15th International Conference on Applied Stochastic Models and Data Analysis (ASMDA2013), Mataró, pp. 751–758 (2013)

  37. Salcedo-Sanz, S., Pastor-Sánchez, A., Del Ser, J., Prieto, L., Geem, Z.W.: A coral reefs optimization algorithm with harmony search operators for accurate wind speed prediction. Renew. Energy 75, 93–101 (2015)

    Article  Google Scholar 

  38. Burkepile, D.E., Hay, M.E.: Coral reefs. In: Encyclopedia of Ecology, pp. 784–796 (2008)

  39. Knowlton, N., Jackson, J.: Corals and coral reefs. In: Encyclopedia of Biodiversity, pp. 330–346 (2013)

  40. De Goeij, J.M., Van Oevelen, D., Vermeij, M.J., Osinga, R., Middelburg, J.J., de Goeij, A.F., et al.: Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342(6154), 108–110 (2013)

    Article  Google Scholar 

  41. Vermeij, M.J., Smith, J.E., Smith, C.M., Thurber, R.V., Sandin, S.A.: Survival and settlement success of coral planulae: independent and synergistic effects of macroalgae and microbes. Oecologia 159(2), 325–336 (2009)

    Article  Google Scholar 

  42. Genin, A., Karp, L.: Effects of flow on competitive superiority in Scleractinian corals. Limnol. Oceanogr. 39(4), 913–924 (1994)

    Article  Google Scholar 

  43. Ates, R.: Aggressive behaviour in corals. Freshw. Mar. Aquar. 12(8), 104–112 (1989)

    Google Scholar 

  44. Chadwick, N.E.: Interspecific aggressive behavior of the Corallimorpharian Corynactis californica (Cnidaria: Anthozoa): effects on sympatric corals and sea anemones. Biol. Bull. 173, 110–125 (1987)

    Article  Google Scholar 

  45. Molácek, J., Denny, M., Bush, J.W.M.: The fine art of surfacing: its efficacy in broadcast spawning. J. Theor. Biol. 294, 40–47 (2012)

    Article  MathSciNet  Google Scholar 

  46. Tay, Y.C., Guest, J.R., Chou, L.M., Todd, P.A.: Vertical distribution and settlement competencies in broadcast spawning coral larvae: implications for dispersal models. J. Exp. Mar. Biol. Ecol. 409(1–2), 324–330 (2011)

    Article  Google Scholar 

  47. Brazeau, D.A., Gleason, D.F., Morgan, M.E.: Self-fertilization in brooding hermaphroditic caribbean corals: evidence from molecular markers. J. Exp. Mar. Biol. Ecol. 231(2), 225–238 (1998)

    Article  Google Scholar 

  48. Yamashiro, H., Nishihira, M.: Experimental study of growth and asexual reproduction in Diaseris distorta (Michelin, 1843), a free-living fungiid coral. J. Exp. Mar. Biol. Ecol. 225(2), 253–267 (1998)

    Article  Google Scholar 

  49. Lirman, D.: Fragmentation in the branching coral Acropora palmata (Lamarck): growth, survivorship, and reproduction of colonies and fragments. J. Exp. Mar. Biol. Ecol. 251(1), 41–57 (2000)

    Article  Google Scholar 

  50. Lesser, M.P.: Experimental biology of coral reefs ecosystems. J. Exp. Mar. Biol. Ecol. 300, 217–252 (2004)

    Article  Google Scholar 

  51. Woodroffe, C.D., Webster, J.M.: Coral reefs and sea-level change. Mar. Geol. 352, 248–267 (2014)

    Article  Google Scholar 

  52. Salcedo-Sanz, S., Muñoz-Bulnes, J., Vermeij, M.: New coral reefs-based approaches for the model type selection problem: a novel method to predict a nation’s future energy demand. Int. J. Bioinspir. Comput. (in press) (2016)

  53. Vermeij, M.J.: Substrate composition and adult distribution determine recruitment patterns in a Caribbean brooding coral. Mar. Ecol. Progr. Ser. 295, 123–133 (2005)

    Article  Google Scholar 

  54. Salcedo-Sanz, S., Camacho-Gómez, C., Molina, D., Herrera, F.: A coral reefs optimization algorithm with substrate layers and local search for large scale global optimization. In: IEEE Congress on Evolutionary Computation, Vancouver (2016)

  55. Salcedo-Sanz, S., Pastor-Sánchez, A., Gallo-Marazuela, D., Portilla-Figueras, A.: A novel coral reefs optimization algorithm for multi-objective problems. Intell. Data Eng. Autom. Learn. Conf. LNCS 8206, 326333 (2013)

    Google Scholar 

  56. Salcedo-Sanz, S., Pastor-Sánchez, A., Portilla-Figueras, A., Prieto, L.: Effective multi-objective optimization with the coral reefs optimization algorithm. Eng. Optim. (in press) (2015)

  57. Sörensen, K.: Metaheuristics—the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  58. Weyland, D.: A rigorous analysis of the harmony search algorithm: how the research community can be misled by a “novel methodology”. Int. J. Appl. Metaheuristic Comput. 1(2), 50–60 (2010)

    Article  Google Scholar 

  59. Weyland, D.: A critical analysis of the harmony search algorithm—how not to solve sudoku. Oper. Res. Perspect. 2, 97–105 (2015)

    Article  MathSciNet  Google Scholar 

  60. Kima, J.H.: Harmony search algorithm: a unique music-inspired algorithm. In: Proceedings of the 12th International Conference on Hydroinformatics, HIC (2016)

  61. Serrano-González, J., Burgos-Payán, M., Riquelme-Santos, J.M., González-Longatt, F.: A review and recent developments in the optimal wind-turbine micro-siting problem. Renew. Sustain. Energy Rev. 30, 133–144 (2014)

    Article  Google Scholar 

  62. Salcedo-Sanz, S., Gallo-Marazuela, D., Pastor-Sánchez, A., Carro-Calvo, L., Portilla-Figueras, A., Prieto, L.: Offshore wind farm design with the coral reefs optimization algorithm. Renew. Energy 63, 109–115 (2014)

    Article  Google Scholar 

  63. Salcedo-Sanz, S., Pastor-Sánchez, A., Prieto, L., Blanco-Aguilera, A., García-Herrera, R.: Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization extreme learning machine approach. Energy Convers. Manag. 87, 10–18 (2014)

    Article  Google Scholar 

  64. Huang, G.B., Zhu, Q.Y.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)

    Article  Google Scholar 

  65. Salcedo-Sanz, S., Casanova-Mateo, C., Pastor-Sánchez, A., Sánchez-Girón, M.: Daily global solar radiation prediction based on a hybrid coral reefs optimization—extreme learning machine approach. Solar Energy 105, 91–98 (2014)

    Article  Google Scholar 

  66. Ceylan, H., Ozturk, H.K.: Estimating energy demand of Turkey based on economic indicators using genetic algorithm approach. Energy Convers. Manag. 45, 2525–2537 (2004)

    Article  Google Scholar 

  67. Kiran, M.S., Özceylan, E., Gündüz, M., Paksoy, T.: A novel hybrid approach based on particle swarm optimization and ant colony optimization to forecast energy demand of Turkey. Energy Convers. Manag. 53, 75–83 (2012)

    Article  Google Scholar 

  68. Salcedo-Sanz, S., Muñoz-Bulnes, J., Portilla-Figueras, J.A., del Ser, J.: One-year-ahead energy demand estimation from macroeconomic variables using computational intelligence algorithms. Energy Convers. Manag. 99, 62–71 (2015)

    Article  Google Scholar 

  69. Salcedo-Sanz, S., Camacho-Gómez, C., Mallol-Poyato, R., Jiménez-Fernández, S., Del Ser, J.: A novel coral reefs optimization algorithm with substrate layers for optimal battery scheduling optimization in micro-grids. Soft Comput. 20(11), 4287–4300 (2016)

    Article  Google Scholar 

  70. Salcedo-Sanz, S., Sánchez-García, J.E., Portilla-Figueras, J.A., Jiménez-Fernández, S., Ahmadzadeh, A.M.: A coral-reefs optimization algorithm for the optimal service distribution problem in mobile radio access networks. Trans. Emerg. Telecommun. Technol. 25(11), 1057–1069 (2014)

    Article  Google Scholar 

  71. Salcedo-Sanz, S., García-Díaz, P., Portilla-Figueras, J.A., Del Ser, J., Gil-Lpez, S.: A coral reefs optimization algorithm for optimal mobile network deployment with electromagnetic pollution control criterion. Appl. Soft Comput. 24, 239–248 (2014)

  72. Falkenauer, E.: The grouping genetic algorithm—widening the scope of the GAs. Belgian J. Oper. Res. Stat. Comput. Sci. 33, 79–102 (1992)

    MATH  Google Scholar 

  73. Salcedo-Sanz, S., García-Díaz, P., Del Ser, J., Bilbao, M.N., Portilla-Figueras, J.A.: A novel grouping coral reefs optimization algorithm for optimal mobile network deployment problems under electromagnetic pollution and capacity control criteria. Expert Syst. Appl. 55, 388–2402 (2016)

  74. Li, M., Miao, C., Leung, C.: A coral reef algorithm based on learning automata for the coverage control problem of heterogeneous directional sensor networks. Sensors 15, 3061730635 (2015)

    Google Scholar 

  75. Ficco, M., Esposito, C., Palmieri, F., Castiglione, A.: A coral-reefs and game theory-based approach for optimizing elastic cloud resource allocation. Future Gener. Comput. Syst. (in press) (2016). doi:10.1016/j.future.2016.05.025

  76. Yang, Z., Zhang, T., Zhang, D.: A novel algorithm with differential evolution and coral reef optimization for extreme learning machine training. Cognit. Neurodyn. (in press) (2015)

  77. Medeiros, I.G., Xavier-Júnior, J.C., Canuto, A.M.: Applying the coral reefs optimization algorithm to clustering problems. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2015)

  78. Silva, H.M., Canuto, A.M., Medeiros, I.G., Xavier-Júnior, J.C.: Cluster ensembles optimization using the coral reefs optimization algorithm. In: Artificial Neural Networks and Machine Learning—ICANN 2016. Lecture Notes in Computer Science, vol. 9887, pp. 275–282 (2016)

  79. Pichpibul, T., Kawtummachai, R.: A modified coral-reef optimization algorithm for the capacitated vehicle routing problem. In: Proceedings of the 29th International Technical Conference on Circuit/Systems Computers and Communications (ITC-CSCC), Phuket, pp. 684–687 (2014)

  80. Pichpibul, T., Kawtummachai, R.: An improved Clarke and Wright savings algorithm for the capacitated vehicle routing problem. Sci. Asia 38, 307–318 (2012)

  81. Deniz, N., Ozcelik, F.: Coral reefs optimization algorithm’s suitability for dynamic cell formation problems. In: Proceedings of the Global Joint Conference on Industrial Engineering and Its Application Areas, Istanbul (2016)

  82. Yawei, Q., Na, T., Zhicheng, J., Yan, W.: Coral reefs optimization for solving parameter identification in permanent magnet synchronous motor. J. Syst. Simul. 28(4) (2016)

Download references

Acknowledgments

This work has been partially supported by the project TIN2014-54583-C2-2-R of the Spanish Ministerial Commission of Science and Technology (MICYT), and by the Comunidad Autónoma de Madrid, under project number S2013ICE-2933_02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Salcedo-Sanz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salcedo-Sanz, S. A review on the coral reefs optimization algorithm: new development lines and current applications. Prog Artif Intell 6, 1–15 (2017). https://doi.org/10.1007/s13748-016-0104-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-016-0104-2

Keywords

Navigation