Skip to main content
Log in

A multi-objective interactive dynamic particle swarm optimizer

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

Multi-objective optimization deals with problems having two or more conflicting objectives that have to be optimized simultaneously. When the objectives change somehow with time, the problems become dynamic, and if the decision maker indicates preferences at runtime, then the algorithms to solve them become interactive. In this paper, we propose the integration of SMPSO/RP, an interactive multi-objective particle swarm optimizer based on SMPSO, with InDM2, an algorithmic template for dynamic interactive optimization with metaheuristics. The result is SMPSO/RPD, an algorithm that provides the search capabilities of SMPSO, incorporates an interactive preference articulation mechanism based on defining one or more reference points, and is able to deal with dynamic problems. We conduct a qualitative study showing the working of SMPSO/RPD on three benchmark problems, remaining a qualitative analysis as an open line of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. jMetalSP: https://github.com/jMetal/jMetalSP.git.

References

  1. Barba-González, C., García-Nieto, J., Nebro, A.J., Cordero, J.A., Durillo, J.J., Navas-Delgado, I., Aldana-Montes, J.F.: jMetalSP: a framework for dynamic multi-objective big data optimization. Appl. Soft Comput. 69, 737–748 (2017)

    Article  Google Scholar 

  2. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

    Article  Google Scholar 

  3. Clerc, M., Kennedy, J.: The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  4. Coello Coello, C., Lamont, G., van Veldhuizen, D.: Multi-objective Optimization Using Evolutionary Algorithms, 2nd edn. Wiley, New York (2007)

    MATH  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Deb, K., Sundar, J., Ubay, B., Chaudhuri, S.: Reference point based multi-objective optimization using evolutionary algorithm. Int. J. Comput. Intell. Res. 2(6), 273–286 (2006)

    MathSciNet  Google Scholar 

  7. Durillo, J.J., Nebro, A.J.: jMetal: a java framework for multi-objective optimization. Adv. Eng. Softw. 42(10), 760–771 (2011)

    Article  Google Scholar 

  8. Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: test cases, approximations, and applications. IEEE Trans. Evol. Comput. 8(5), 425–442 (2004)

    Article  Google Scholar 

  9. Jaszkiewicz, A., Branke, J.: Interactive multiobjective evolutionary algorithms. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization, pp. 179–193. Springer, Berlin (2008)

    Chapter  Google Scholar 

  10. Jiang, S., Yang, S., Yao, X., Tan, K.C., Kaiser, M., Krasnogor, N.: Benchmark problems for CEC2018 competition on dynamic multiobjective optimisation (2018)

  11. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

  12. Li, K., Deb, K., Yao, X.: R-metric: evaluating the performance of preference-based evolutionary multiobjective optimization using reference points. IEEE Trans. Evol. Comput. 22(6), 821–835 (2018)

    Article  Google Scholar 

  13. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  14. Nebro, A., Durillo, J.J., Vergne, M.: Redesigning the jMetal multi-objective optimization framework. In: Proceedings of the Conference on Genetic and Evolutionary Computation, GECCO Companion’15, pp. 1093–1100. ACM (2015)

  15. Nebro, A.J., Durillo, J.J., García-Nieto, J., Barba-González, C., Del Ser, J., Coello Coello, C.A., Benítez-Hidalgo, A., Aldana-Montes, J.F.: Extending the speed-constrained multi-objective PSO (SMPSO) with reference point based preference articulation. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) Parallel Problem Solving from Nature—PPSN XV, pp. 298–310. Springer, Cham (2018)

    Chapter  Google Scholar 

  16. Nebro, A.J., Durillo, J.J., García-Nieto, J., Coello Coello, C.A., Luna, F., Alba, E.: SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In: IEEE Symposium on Computational Intelligence in Multi-criteria Decision-Making, pp. 66–73 (2009)

  17. Nebro, A.J., Ruiz, A.B., Barba-González, C., García-Nieto, J., Luque, M., Aldana-Montes, J.F.: InDM2: interactive dynamic multi-objective decision making using evolutionary algorithms. Swarm Evol. Comput. 40, 184–195 (2018)

    Article  Google Scholar 

  18. Ruiz, A., Saborido, R., Luque, M.: A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm. J. Glob. Optim. 62(1), 101–129 (2015)

    Article  MathSciNet  Google Scholar 

  19. Weise, T., Zapf, M., Chiong, R., Nebro, A.J.: Why is Optimization Difficult?, pp. 1–50. Springer, Berlin (2009)

    Google Scholar 

  20. White, T.: Hadoop: The Definitive Guide, 1st edn. O’Reilly Media, Inc., Newton (2009)

    Google Scholar 

  21. Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making, Theory and Applications, pp. 468–486. Springer, Berlin (1980)

    Chapter  Google Scholar 

  22. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, pp. 10–10. USENIX Association (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José García-Nieto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partially funded by Spanish Grants TIN2017-86049-R (Spanish Ministry of Education and Science). Cristóbal Barba-González is supported by Grant BES-2015-072209 (Spanish Ministry of Economy and Competitiveness). José García-Nieto is the recipient of a Post-Doctoral fellowship of “Captación de Talento para la Investigación” Plan Propio at Universidad de Málaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barba-González, C., Nebro, A.J., García-Nieto, J. et al. A multi-objective interactive dynamic particle swarm optimizer. Prog Artif Intell 9, 55–65 (2020). https://doi.org/10.1007/s13748-019-00198-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-019-00198-8

Keywords

Navigation