Skip to main content
Log in

Numerical solution of the time-fractional Navier–Stokes equations for incompressible flow in a lid-driven cavity

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper addresses a computational technique for solving 2D unsteady Navier–Stokes equations (NSEs) with time-fractional order in the Caputo sense in the formulation of stream function-vorticity. The finite difference-based method of lines is used to discretize the time-fractional NSEs on a collocated grid that construct a fractional differential algebraic equations system. After solving the discretized complementary Poisson’s equation, this system is reduced to a system of fractional differential equations (FDEs). The resulting FDEs are solved by fractional backward differentiation formulas. The flow in a square lid-driven cavity is considered as the model problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Agrawal O, Machado JT, Sabatier J (2004) Fractional derivatives and their application: nonlinear dynamics. Springer, Berlin

    Google Scholar 

  • Carpinteri A, Mainardi F (2014) Fractals and fractional calculus in continuum mechanics, vol 378. Springer, Berlin

    MATH  Google Scholar 

  • Corduneanu C (2008) Principles of differential and integral equations, vol 295. American Mathematical Soc, Providence

    MATH  Google Scholar 

  • Dabiri A, Moghaddam BP, Machado JAT (2018) Optimal variable-order fractional PID controllers for dynamical systems. J Comput Appl Math 339:40–48

    Article  MathSciNet  Google Scholar 

  • Datta BN (2010) Numerical linear algebra and applications, vol 116. Siam, Washington, DC

    Book  Google Scholar 

  • De Oliveira EC, Machado JAT (2014) A review of definitions for fractional derivatives and integral, Hindawi

  • Diethelm K (2010) The analysis of fractional differential equations: an application-oriented exposition using differential operators of caputo type. Springer, Berlin

    Book  Google Scholar 

  • El-Shahed M, Salem A (2004) On the generalized navier-stokes equations. Appl Math Comput 156(1):287–293

    Article  MathSciNet  Google Scholar 

  • Fletcher CA (2012) Computational techniques for fluid dynamics 2: specific techniques for different flow categories. Springer Science and Business Media, Berlin

    Google Scholar 

  • Galeone L, Garrappa R (2006) On multistep methods for differential equations of fractional order. Med J Math 3(3–4):565–580

    MathSciNet  MATH  Google Scholar 

  • Ganji Z, Ganji DD, Ganji AD, Rostamian M (2010) Analytical solution of time-fractional navier-stokes equation in polar coordinate by homotopy perturbation method. Num Methods Partial Differ Equ 26(1):117–124

    Article  MathSciNet  Google Scholar 

  • Gao GH, Sun ZZ, Zhang H-W (2014) A new fractional numerical differentiation formula to approximate the caputo fractional derivative and its applications. J Comput Phys 259:33–50

    Article  MathSciNet  Google Scholar 

  • Ghia U, Ghia KN, Shin C (1982) High-re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J Comput Phys 48(3):387–411

    Article  Google Scholar 

  • He J (1998a) Nonlinear oscillation with fractional derivative and its applications. In: International conference on vibrating engineering, vol 98. Dalian, China, pp 288–291

  • He JH (1998b) Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput Methods Appl Mech Eng 167(1–2):57–68

    Article  MathSciNet  Google Scholar 

  • Hu JW, Tang HM (2003) Numerical methods for differential equations. City University, Hong Kong

    Google Scholar 

  • Keshi FK, Moghaddam BP, Aghili A (2018) A numerical approach for solving a class of variable-order fractional functional integral equations. Comput Appl Math:1–14

  • Kilbas A, Srivastava H, Trujillo J (2006) Theory and applications of fractional differential equations. Amsterdam

  • Kumar D, Singh J, Kumar S (2015) A fractional model of navier-stokes equation arising in unsteady flow of a viscous fluid. J Assoc Arab Univ Basic Appl Sci 17:14–19

    Google Scholar 

  • Lubich C (1986) Discretized fractional calculus. SIAM J Math Anal 17(3):704–719

    Article  MathSciNet  Google Scholar 

  • Machado JT, Guest J (2002) Special issue on fractional calculus and applications. Nonlinear Dynam 29(1–4):3–22

    MathSciNet  Google Scholar 

  • Magin RL (2006) Fractional calculus in bioengineering. Begell House, Redding

    Google Scholar 

  • Mainardi F, Luchko Y, Pagnini G (2001) The fundamental solution of the space-time fractional diffusion equation. Fract Calcul Appl Anal 4(2):153–192

    MathSciNet  MATH  Google Scholar 

  • Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley-Interscience, Oxford

    MATH  Google Scholar 

  • Moghaddam BP, Aghili A (2012) A numerical method for solving linear non-homogenous fractional ordinary differential equation. Appl Math Inf Sci 6(3):441–445

    MathSciNet  Google Scholar 

  • Moghaddam BP, Mostaghim ZS (2014) A novel matrix approach to fractional finite difference for solving models based on nonlinear fractional delay differential equations. Ain Shams Eng J 5(2):585–594

    Article  Google Scholar 

  • Moghaddam BP, Machado JAT, Babaei A (2018) A computationally efficient method for tempered fractional differential equations with application. Comput Appl Math 37(3):3657–3671

    Article  MathSciNet  Google Scholar 

  • Momani S, Odibat Z (2006) Analytical solution of a time-fractional navier-stokes equation by adomian decomposition method. Appl Math Comput 177(2):488–494

    Article  MathSciNet  Google Scholar 

  • Odibat ZM (2009) Computational algorithms for computing the fractional derivatives of functions. Math Comput Simul 79(7):2013–2020

    Article  MathSciNet  Google Scholar 

  • Oldham K, Spanier J (1974) The Fractional Calculus Theory and Applications of Differentiation and integration to arbitrary order, vol 111. Elsevier, Oxford

    MATH  Google Scholar 

  • Painter J (1981) Solving the Navier–Stokes equations with lsodi and the method of lines, Tech. rep., Lawrence Livermore National Lab., CA (USA)

  • Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Elsevier, Oxford

    MATH  Google Scholar 

  • Rudolf H (2000) Applications of fractional calculus in physics. World Scientific, Singapore

    Google Scholar 

  • Schiesser W (1991) The numerical method of lines: integration of partial differential equations. Academic Press, New York

    MATH  Google Scholar 

  • Smith GD (1985) Numerical solution of partial differential equations: finite difference methods. Oxford University Press, Oxford

    Google Scholar 

  • Strumendo M (2016) Solution of the incompressible navier-stokes equations by the method of lines. Int J Num Methods Fluids 80(5):317–339

    Article  MathSciNet  Google Scholar 

  • Tarhan T, Selcuk N (2001) Method of lines for transient flow fields. Int J Comput Fluid Dyn 15(4):309–328

    Article  Google Scholar 

  • Zaky MA (2018) A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations. Comput Appl Math 37(3):3525–3538

    Article  MathSciNet  Google Scholar 

  • Zaky MA (2018) An improved tau method for the multi-dimensional fractional Rayleigh–Stokes problem for a heated generalized second grade fluid. Comput Math Appl 75(7):2243–2258

    Article  MathSciNet  Google Scholar 

  • Zaky MA, Doha EH, Machado JT (2018) A spectral numerical method for solving distributed-order fractional initial value problems. J Comput Nonlinear Dynam 13(10):101007

    Article  Google Scholar 

  • Zaky MA, Doha EH, Machado JT (2018) A spectral framework for fractional variational problems based on fractional Jacobi functions. Appl Num Math

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Ivaz.

Additional information

Communicated by José Tenreiro Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

If \(v_{ij}\ge 0\) and \(w_{ij}\ge 0\), then

$$\begin{aligned}&A_{i,j}=\dfrac{1}{\mathrm{Re} \bigtriangleup x^{2}}\nonumber \\&B_{i,j}=\frac{u_{i,j}}{\bigtriangleup x}+\dfrac{1}{Re \bigtriangleup x^{2}}\nonumber \\&C_{i,j}=\dfrac{1}{\mathrm{Re} \bigtriangleup y^{2}}\nonumber \\&D_{i,j}=\frac{v_{i,j}}{\bigtriangleup x}+\dfrac{1}{Re \bigtriangleup y^{2}}\nonumber \\&E_{i,j}=-\frac{u_{i,j}}{\bigtriangleup x}-\frac{v_{i,j}}{\bigtriangleup x}-\dfrac{2}{Re \bigtriangleup y^{2}}-\dfrac{2}{\mathrm{Re} \bigtriangleup y^{2}} \end{aligned}$$
(A1)

If \(v_{ij}\ge 0\) and \(w_{ij}< 0\), then

$$\begin{aligned}&A_{i,j}=\dfrac{1}{\mathrm{Re} \bigtriangleup x^{2}}\nonumber \\&B_{i,j}=\frac{u_{i,j}}{\bigtriangleup x}+\dfrac{1}{\mathrm{Re} \bigtriangleup x^{2}}\nonumber \\&C_{i,j}=-\frac{v_{i,j+1}}{\bigtriangleup y}+\dfrac{1}{\mathrm{Re} \bigtriangleup y^{2}}\nonumber \\&D_{i,j}=\dfrac{1}{\mathrm{Re} \bigtriangleup y^{2}}\nonumber \\&E_{i,j}=-\frac{u_{i,j}}{\bigtriangleup x}+\frac{v_{i,j+1}}{\bigtriangleup x}-\dfrac{2}{\mathrm{Re} \bigtriangleup y^{2}}-\dfrac{2}{\mathrm{Re} \bigtriangleup y^{2}}. \end{aligned}$$
(A2)

If \(v_{ij}< 0\) and \(w_{ij}\ge 0\), then

$$\begin{aligned}&A_{i,j}=-\frac{u_{i+1,j}}{\bigtriangleup x}+\dfrac{1}{\mathrm{Re} \bigtriangleup x^{2}}\nonumber \\&B_{i,j}=\dfrac{1}{\mathrm{Re} \bigtriangleup x^{2}}\nonumber \\&C_{i,j}=\dfrac{1}{\mathrm{Re} \bigtriangleup y^{2}}\nonumber \\&D_{i,j}=\frac{v_{i,j}}{\bigtriangleup y}+\dfrac{1}{\mathrm{Re} \bigtriangleup y^{2}}\nonumber \\&E_{i,j}=\frac{u_{i+1,j}}{\bigtriangleup x}-\frac{v_{i,j+1}}{\bigtriangleup x}-\dfrac{2}{\mathrm{Re} \bigtriangleup y^{2}}-\dfrac{2}{\mathrm{Re} \bigtriangleup y^{2}}. \end{aligned}$$
(A3)

If \(v_{ij}< 0\) and \(w_{ij}< 0\), then

$$\begin{aligned}&A_{i,j}=-\frac{u_{i+1,j}}{\bigtriangleup x}+\dfrac{1}{\mathrm{Re} \bigtriangleup x^{2}}\nonumber \\&B_{i,j}=\dfrac{1}{\mathrm{Re} \bigtriangleup x^{2}}\nonumber \\&C_{i,j}=-\frac{v_{i,j}}{\bigtriangleup y}+\dfrac{1}{\mathrm{Re} \bigtriangleup y^{2}}\nonumber \\&D_{i,j}=\dfrac{1}{\mathrm{Re} \bigtriangleup y^{2}}\nonumber \\&E_{i,j}=\frac{u_{i+1,j}}{\bigtriangleup x}-\frac{v_{i,j+1}}{\bigtriangleup x}-\dfrac{2}{\mathrm{Re} \bigtriangleup y^{2}}-\dfrac{2}{\mathrm{Re} \bigtriangleup y^{2}}. \end{aligned}$$
(A4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedini, A., Ivaz, K., Shahmorad, S. et al. Numerical solution of the time-fractional Navier–Stokes equations for incompressible flow in a lid-driven cavity. Comp. Appl. Math. 40, 34 (2021). https://doi.org/10.1007/s40314-021-01413-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01413-w

Keywords

Mathematics Subject Classification

Navigation