Skip to main content
Log in

Constructing local controlled developable H-Bézier surfaces by interpolating characteristic curves

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The developable surface is always a hot issue in CAGD, CAD/CAM and used in many manufacturing planning operations, e.g., for ships, aircraft wing, automobiles and garments. In some special fields, the CAD model of developable surface is designed by interpolating a given spatial characteristic curve. In this paper, we present a class of methods to construct local controlled developable H-Bézier surfaces through a given characteristic curve. First, we introduce a class of generalized cubic H-Bézier basis functions, and utilize them to design the generalized cubic H-Bézier curves with shape parameters. Then we construct generalized cubic developable H-Bézier surfaces through a given space generalized cubic H-Bézier curve which serve as the line of curvature or geodesic. The shapes of the constructed surfaces can be adjusted and altered expediently using the shape parameters. Furthermore, the sufficient and necessary conditions for the interpolating developable H-Bézier surface to be a cylinder or a cone are deduced, respectively. Finally, we give some representative examples to illustrate the convenience and efficiency of the presented methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alliez P, Cohen-Steiner D, Devillers W, Lévy B, Desbrum M (2003) Anisotropic polygonal remeshing. ACM Trans Graph 22(3):485–493

    Article  Google Scholar 

  • Aumann G (1991) Interpolation with developable Bézier patches. Comput Aided Geom Des 8(5):409–420

    Article  MATH  Google Scholar 

  • Aumann G (2003) A simple algorithm for designing developable Bézier surfaces. Comput Aided Geom Des 20(8):601–619

    Article  MATH  Google Scholar 

  • Bo PB, Wang WP (2007) Geodesic-controlled developable surfaces for modeling paper bending. Comput Graph Forum 26(3):365–374

    Article  Google Scholar 

  • Bodduluri R, Ravani B (1993) Design of developable surfaces using duality between plane and point geometries. Comput Aided Des 25(10):621–632

    Article  MATH  Google Scholar 

  • Bodduluri R, Ravani B (1994) Geometric design and fabrication of developable Bézier and B-spline surfaces. ASME Trans J Mech Des 116(4):1042–1048

    Article  Google Scholar 

  • Cao HX, Hu G et al (2017) Offset approximation of hybrid hyperbolic polynomial curves. Results Math 72(1–2):1055–1071

    Article  MathSciNet  MATH  Google Scholar 

  • Chu CH, Chen JT (2004) Geometric design of developable composite Bézier surfaces. Comput Aided Des Appl 1(1–4):531–539

    Article  Google Scholar 

  • Chu CH, Wang C, Tsai CR (2008) Computer aided geometric design of strip using developable Bézier patches. Comput Ind 59(6):601–611

    Article  Google Scholar 

  • do Carmo MCY (1976) Differential geometry of curves and surfaces. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Fan FT, Wang GZ (2006) Conversion matrix between two bases of the algebraic hyperbolic space. J Zhejiang Univ Sci A 7(2):181–186

    Article  MATH  Google Scholar 

  • Farin G (2002) Curves and surfaces for computer aided geometric design: a practical guide, 5th edn. Academic Press, San Diego

    MATH  Google Scholar 

  • Faux ID, Pratt MJ (1979) Computational Geometry for design and manufacturing. Ellis Horwood

    MATH  Google Scholar 

  • Fernandez J (2007) B-spline control nets for developable surfaces. Comput Aided Geom Des 24(4):189–199

    Article  MathSciNet  MATH  Google Scholar 

  • Frey W, Bindschadler D (1993) Computer aided design of a class of developable Bézier surfaces, vol 8057. General Motors R & D Publication

    Google Scholar 

  • Gunter W, Peter P (1988) Computer-aided treatment of developable surfaces. Comput Graph 12(1):39–51

    Article  MathSciNet  Google Scholar 

  • Hu G, Cao HX (2018) Xinqiang Qin, Construction of generalized developable Bézier surfaces with shape parameters. Math Meth Appl Sci 41(17):7804–7829

    Article  MATH  Google Scholar 

  • Hu G, Cao HX, Qin XQ et al (2017) Geometric design and continuity conditions of developable λ-Bézier surfaces. Adv Eng Soft 114:235–245

    Article  Google Scholar 

  • Hu G, Wu JL, Qin XQ (2018) A new approach in designing of local controlled developable H-Bézier surfaces. Adv Eng Soft 121:26–38

    Article  Google Scholar 

  • Huang Y, Wang GZ (2007) An orthogonal basis for the hyperbolic hybrid polynomial space. Sci China Series Inform Sci 50(1):21–28

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang HD, Yoon SH (2015) Constructing developable surfaces by wrapping cones and cylinders. Comput Aided Des 58:230–235

    Article  Google Scholar 

  • Kimmel R, Kiryati N (1996) Finding shortest paths on surfaces by fast global approximation and precise local refinement. Int J Pattern Recogn Artif Intell 10(6):643–656

    Article  Google Scholar 

  • Kimmel R, Amir A, Bruckstein AM (1995) Finding shortest paths on surfaces using level sets propagation. IEEE Trans PAMI 17(1):635–640

    Article  Google Scholar 

  • Kimmel R, Amir A, Bruckstein AM (1994) Finding shortest paths on surfaces, presented in curves and surfaces, Chamonix, France, June 1993. In: Laurent PJ, Le Méhauté A, Schumaker L (eds) Curves and surfaces in geometric design. Peters publisher, Wellesley, Mass, pp 259–268

  • Lee R, Ahn YJ (2015) Limit curve of H-Bézier curves and rational Bézier curves in standard form with the same weight. J Comput Appl Math 281:1–9

    Article  MathSciNet  MATH  Google Scholar 

  • Li YJ, Wang GZ (2005) Two kinds of B-basis of the algebraic hyperbolic space. J Zhejiang Univ Sci A 6(7):750–759

    Article  Google Scholar 

  • Li CY, Wang RH, Zhu CG (2013) An approach for designing a developable surface through a given line of curvature. Comput Aided Des 45(3):621–627

    Article  Google Scholar 

  • Li CY, Zhu CG, Wang RH (2015) Researches on developable surface modeling by interpolating special curves. Sci Sin Math 45(9):1141–1456

    Google Scholar 

  • Liu YJ, Lai YK, Hu SM (2009) Stripification of free-form surfaces with global error bounds for developable approximation. IEEE Trans Autom Sci Eng 6(4):700–709

    Article  Google Scholar 

  • Maekawa T, Chalfant JS (1998) Design and tessellation of B-spline developable surfaces. ASME Trans J Mech Des 120(3):453–461

    Article  Google Scholar 

  • Maekawa T, Wolter FE, Patrikalakis NM (1996) Umbilics and lines of curvature for shape interrogation. Comput Aided Geom Des 13:133–161

    Article  MathSciNet  MATH  Google Scholar 

  • Mei XM, Huang JZ (2003) Differential geometry. Higher Education Press, Beijing

    Google Scholar 

  • Patrikalakis NM, Maekawa T (2002) Shape interrogation for computer aided design and manufacturing. Springer-Verlag

    Book  MATH  Google Scholar 

  • Peternell M (2004) Developable surface fitting to point clouds. Comput Aided Geom Des 21(8):785–803

    Article  MathSciNet  MATH  Google Scholar 

  • Pottmann H (1993) The geometry of Tchebycheffian spines. Comput Aided Geom Des 10(3–4):181–210

    Article  MATH  Google Scholar 

  • Pottmann H, Farin G (1995) Developable rational Bézier and B-spline surfaces. Comput Aided Geom Des 12(5):513–531

    Article  MATH  Google Scholar 

  • Qian J, Tang Y (2007) The application of H-Bézier-like curves in engineering. J Numer Methods Comput Appl 28(3):167–178

    MathSciNet  MATH  Google Scholar 

  • Qin XQ, Hu G, Yang Y (2014) Construction of PH splines based on H-Bézier curves. Appl Math Comput 238:460–467

    MathSciNet  MATH  Google Scholar 

  • Spivak M (1979) A comprehensive introduction to differential geometry, 2nd edn. Publish or Perish, Houston

    MATH  Google Scholar 

  • Tang K, Chen M (2009) Quasi-developable mesh surface interpolation via mesh deformation. IEEE Trans vis Comput Graph 15(3):518–528

    Article  Google Scholar 

  • Tang C, Bo P, Wallner J, Pottman H (2016) Interactive design of developable surfaces. ACM Trans Graph 35(2):1–12

    Article  Google Scholar 

  • Wang GZ, Yang QM (2004) Planar cubic hybrid hyperbolic polynomial curve and its shape classification. Prog Nat Sci 14(1):41–46

    Article  MathSciNet  MATH  Google Scholar 

  • Wang GJ, Tang K, Tai CH (2004) Parametric representation of a surface pencil with a common spatial geodesic. Comput Aided Des 36(5):447–459

    Article  MATH  Google Scholar 

  • Wang Y, Tan J, Li Z (2011) Multidegree reduction approximation of H-Bézier curves. J Comput Aided Des Comput Graph 23(11):1838–1842

    Google Scholar 

  • Wei YW, Cao J, Wang GZ (2010) On the characterization diagrams of planar cubic hybrid hyperbolic polynomial curve. J Comput Aided Des Comput Graph 22(5):833–837

    Google Scholar 

  • Wu R (2007) Shape analysis of planar cubic H-Bézier curve. Acta Math Appl Sin 30(5):816–821

    MATH  Google Scholar 

  • Zeng L, Liu YJ, Chen M et al (2012) Least squares quasi-developable mesh approximation. Comput Aided Geom Des 29(7):565–578

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang JW, Krause FL, Zhang HY (2005) Unifying C-curves and H-curves by extending the calculation to complex numbers. Comput Aided Geom Des 22(9):865–883

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao HY, Wang GJ (2007) Shape control of cubic H-Bézier curve by moving control point. J Inf Comput Sci 4(2):871–878

    Google Scholar 

  • Zhao HY, Wang GJ (2008) A new method for designing a developable surface utilizing the surface pencil through a given curve. Prog Nat Sci 18(1):105–110

    Article  MathSciNet  Google Scholar 

  • Zhou M, Yang JQ, Zheng HC, Song WJ (2013) Design and shape adjustment of developable surfaces. Appl Math Model 37:3789–3801

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers for their insightful suggestions and comments, which helped us to improve the presentation and content of the paper. This work is supported by the National Natural Science Foundation of China (Grant nos. 51875454 and 61772416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Hu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Communicated by Justin Wan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Wu, J. & Wang, X. Constructing local controlled developable H-Bézier surfaces by interpolating characteristic curves. Comp. Appl. Math. 40, 216 (2021). https://doi.org/10.1007/s40314-021-01587-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01587-3

Keywords

Mathematics Subject Classification

Navigation