Skip to main content
Log in

A variant of two-step modulus-based matrix splitting iteration method for Retinex problem

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Based on a variational optimization model, and by imposing physical constraints on the reflection value, and deriving deformation of the Retinex problem, we find that the Retinex problem is equivalent to a linear complementarity problem and its solution can be computed by solving an equivalent fixed-point equation. In light of the theoretical analysis of the special structure of the system matrix of the linear complementarity problem, we propose a variant of the two-step modulus-based matrix splitting iteration method, and then prove its unconditional convergence. We further give practically quasi-optimal values of the involved iteration parameters in this method. The numerical results show that the variant of the two-step modulus-based matrix splitting iteration method is effective in terms of iteration steps, computing time, and natural image quality evaluator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bai Z-Z (1996) The convergence of parallel iteration algorithms for linear complementarity problems. Comput Math Appl 32:1–17

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z (1999) A class of modified block SSOR preconditioners for symmetric positive definite systems of linear equations. Adv Comput Math 10:169–186

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z (2009) Optimal parameters in the HSS-like methods for saddle-point problems. Numer Linear Algebra Appl 16:447–479

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z (2010) Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17:917–933

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z (2012) Block alternating splitting implicit iteration methods for saddle-point problems from time-harmonic eddy current models. Numer Linear Algebra Appl. 19:914–936

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z (2013) Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading blocks. J Comput Appl Math. 237:295–306

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z, Golub GH, Ng MK (2003) Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J Matrix Anal Appl 24:603–626

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z, Pan J-Y (2021) Matrix Analysis and Computations. SIAM, Philadelphia, PA

    Book  Google Scholar 

  • Bai Z-Z, Wang C-L (2001) Sufficient conditions for the convergent splittings of non-Hermitian positive definite matrices. Linear Algebra Appl. 330:215–218

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z, Wu W-T (2018) On greedy randomized Kaczmarz method for solving large sparse linear systems. SIAM J Sci Comput 40:A592–A606

    Article  MathSciNet  Google Scholar 

  • Cooper TJ, Baqai FA (2004) Analysis and extensions of the Frankle-McCann Retinex algorithm. J Electron Imag 13:85–92

    Article  Google Scholar 

  • Chen F (2015) On choices of iteration parameter in HSS method. Appl Math Comput 271:832–837

    Article  MathSciNet  Google Scholar 

  • Chen F, Zhu Y, Muratova GV (2021) Two-step modulus-based matrix splitting iteration methods for Retinex problem. Numer Algor 88:1989–2005

    Article  MathSciNet  Google Scholar 

  • Dong J-L, Jiang M-Q (2009) A modified modulus method for symmetric positive-definite linear complementarity problems. Numer Linear Algebra Appl 16:129–143

    Article  MathSciNet  Google Scholar 

  • Dong J-L, Gao J-B, Ju F-J, Shen J-H (2016) Modulus methods for nonnegatively constrained image restoration. SIAM J Imaging Sci 9:1226–1246

    Article  MathSciNet  Google Scholar 

  • Funt B, Ciurea F (2004) Retinex in MATLAB. J Electron Imag 13:48–57

    Article  Google Scholar 

  • Hurlbert A (1986) Formal connections between lightness algorithms. J Opt Soc Am A 3:1684–1693

    Article  Google Scholar 

  • Huang Y-M (2014) A practical formula for computing optimal parameters in the HSS iteration methods. J Comput Appl Math 255:142–149

    Article  MathSciNet  Google Scholar 

  • Jobson DJ, Rahman Z (1997) Member, IEEE and G.A. Woodell, Properties and performance of a center/surround Retinex. IEEE Trans Image Process 6:451–462

    Article  Google Scholar 

  • Kimmel R, Elad M, Shaked D, Keshet R, Sobel I (2003) A variational framework for Retinex. Int J Comput Vis 52:7–23

    Article  Google Scholar 

  • Land EH, McCann JJ (1971) Lightness and Retinex theory. J Opt Soc Am A 61:1–11

    Article  Google Scholar 

  • Land EH (1977) The Retinex theory of color vision. Sci Amer 237:108–128

    Article  MathSciNet  Google Scholar 

  • Land EH (1983) Recent advances in retinex theory and some implications for cortical computations: Color vision and the natural image. Proc Natl Acad Sci USA 80:5163–5169

    Article  Google Scholar 

  • Land EH (1986) An alternative technique for the computation of the designator in the Retinex theory of color vision. Proc Natl Acad Sci USA 83:3078–3080

    Article  Google Scholar 

  • Li H-F, Zhang L-P, Shen H-F (2012) A perceptually inspired variational method for the uneven intensity correction of remote sensing images. IEEE Trans Geosci Remote Sens 50:3053–3065

    Article  Google Scholar 

  • Liang J-W, Zhang X-Q (2015) Retinex by higher order total variation \(L^1\) decomposition. J Math Imaging Vis 52:345–355

    Article  Google Scholar 

  • Morel JM, Petro AB, Sbert C (2010) A PDE formalization of Retinex theory. IEEE Trans Image Process 19:2825–2837

    Article  MathSciNet  Google Scholar 

  • Mittal A, Soundararajan R, Bovik AC (2013) Making a “Completely Blind’’ image quality analyzer. IEEE Signal Process Lett 20:209–212

    Article  Google Scholar 

  • Ng MK, Wang W (2011) A total variation model for Retinex. SIAM J Imaging Sci 4:345–365

    Article  MathSciNet  Google Scholar 

  • Rahman Z, Jobson DJ, Woodell GA (2004) Retinex processing for automatic image enhancement. J Electron Imag 13:100–110

    Article  Google Scholar 

  • Wang W, He C-J (2015) A variational model with barrier functionals for Retinex. SIAM J Imag Sci 8:1955–1980

    Article  MathSciNet  Google Scholar 

  • Yang X, Huang Y-M, Sun L (2018) A modulus iteration method for Retinex problem. Numer Linear Algebra Appl 25:e2207

  • Zosso D, Tran G, Osher SJ (2015) Non-local Retinex-A unifying framework and beyond. SIAM J Imaging Sci 8:787–826

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Chen.

Additional information

Communicated by Zhong-Zhi Bai.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by R &D Program of Beijing Municipal Education Commission (No. KM201911232010), P.R. China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Zhu, Y. A variant of two-step modulus-based matrix splitting iteration method for Retinex problem. Comp. Appl. Math. 41, 244 (2022). https://doi.org/10.1007/s40314-022-01952-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01952-w

Keywords

Mathematics Subject Classification

Navigation