Skip to main content

Advertisement

Log in

Unconditionally convergent and superconvergent FEMs for nonlinear coupled time-fractional prey–predator problem

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a linearized L1-Galerkin finite element method (FEM) is proposed to solve the nonlinear coupled time-fractional prey–predator problem. In order to derive the unconditionally optimal \(L^2\)-norm error estimate of the numerical scheme, the time-space error splitting technique is utilized in the convergence analysis. In addition, the unconditional superclose and superconvergence results under the bilinear finite element are deduced in details. To numerically solve the system with nonsmooth solutions and improve computational efficiency, we utilize nonuniform L1 scheme in time and construct the corresponding fast algorithm based on sum-of-exponentials technique. Finally, numerical examples are reported to show the accuracy of the proposed FEMs and the effectiveness of the fast algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Abrams P (2000) The evolution of predator-prey interactions: theory and evidence. Annual Review of Ecology and Systematics 31:79–105

    Google Scholar 

  • Berryman AA (1992) The orgins and evolution of predator-prey theory, Ecology 73(5)

  • Holling CS (1965) The functional response of predators to prey density and its role in mimicry and population regulation. Memoirs of the Entomological Society of Canada 97(S45):5–60

    Google Scholar 

  • Qi H, Meng X (2021) Threshold behavior of a stochastic predator-prey system with prey refuge and fear effect. Applied Mathematics Letters 113:106846

    MathSciNet  MATH  Google Scholar 

  • Liu Q, Jiang D (2021) Influence of the fear factor on the dynamics of a stochastic predator-prey model. Applied Mathematics Letters 112:106756

    MathSciNet  MATH  Google Scholar 

  • Zhang H, Cai Y, Fu S, Wang W (2019) Impact of the fear effect in a prey-predator model incorporating a prey refuge. Applied Mathematics and Computation 356:328–337

    MathSciNet  MATH  Google Scholar 

  • Kar TK (2005) Stability analysis of a prey-predator model incorporating a prey refuge. Communications in Nonlinear Science and Numerical Simulation 10(6):681–691

    MathSciNet  MATH  Google Scholar 

  • Liu M, Wang K (2013) Dynamics of a Leslie-Gower Holling-type II predator-prey system with Lévy jumps. Nonlinear Analysis Theory Methods & Applications 85:204–213

    MathSciNet  MATH  Google Scholar 

  • Sun G, Zhang J, Song L, Jin Z, Li B (2012) Pattern formation of a spatial predator-prey system. Applied Mathematics and Computation 218(22):11151–11162

    MathSciNet  MATH  Google Scholar 

  • Huang J, Ruan S, Song J (2014) Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response. Journal of Differential Equations 257(6):1721–1752

    MathSciNet  MATH  Google Scholar 

  • Macías-Díaz JE, Vargas-Rodriguez H (2022) Analysis and simulation of numerical schemes for nonlinear hyperbolic predator-prey models with spatial diffusion. Journal of Computational and Applied Mathematics 404:113636

    MathSciNet  MATH  Google Scholar 

  • Vargas AM, Ureña Prieto F, Negreanu M, Benito J, García A, Gavete L (2021) Convergence and numerical simulations of prey-predator interactions via a meshless method, Applied Numerical Mathematics 161:333–347

  • Dang QA, Hoang MT (2019) Nonstandard finite difference schemes for a general predator-prey system. Journal of Computational Science 36:101015

    MathSciNet  Google Scholar 

  • Umar M, Sabir Z, Raja MAZ (2019) Intelligent computing for numerical treatment of nonlinear prey-predator models. Applied Soft Computing 80:506–524

    Google Scholar 

  • Paul S, Mondal SP, Bhattacharya P (2016) Numerical solution of Lotka Volterra prey predator model by using Runge-Kutta-Fehlberg method and Laplace Adomian decomposition method. Alexandria Engineering Journal 55(1):613–617

    Google Scholar 

  • Bildik N, Deniz S (2016) The use of Sumudu decomposition method for solving predator-prey systems. Mathematical Sciences Letters 5(3):285–289

    Google Scholar 

  • Shi D, Zhang S (2022) Unconditional superconvergence of the fully-discrete schemes for nonlinear prey-predator model. Applied Numerical Mathematics 172:118–132

    MathSciNet  MATH  Google Scholar 

  • Sabatier J, Agrawal OP, Machado JAT (2007) Advances in fractional calculus. Springer, Dordrecht

    MATH  Google Scholar 

  • Dalir M, Bashour M (2010) Applications of fractional calculus. Applied Mathematical Sciences 4(21):1021–1032

    MathSciNet  MATH  Google Scholar 

  • Gorenflo R, Mainardi F (1997) Fractional calculus: integral and differential equations of fractional order, Springer Vienna

  • Ucar E, Özdemir N, Altun E, Kumar D, Baleanu D, Hristov J, Nieto JJ, Ozdemir N (2019) Fractional order model of immune cells influenced by cancer cells. Mathematical Modelling of Natural Phenomena 14(3):308

    MathSciNet  MATH  Google Scholar 

  • Uçar E, Özdemir N (2021) A fractional model of cancer-immune system with Caputo and Caputo-Fabrizio derivatives. The European Physical Journal Plus 136(1):1–17

    Google Scholar 

  • Din A, Abidin MZ (2022) Analysis of fractional-order vaccinated Hepatitis-B epidemic model with Mittag-Leffler kernels. Mathematical Modelling and Numerical Simulation with Applications 2(2):59–72

    Google Scholar 

  • Javidi M, Nyamoradi N (2013) Dynamic analysis of a fractional order prey-predator interaction with harvesting. Applied mathematical modelling 37(20–21):8946–8956

    MathSciNet  MATH  Google Scholar 

  • Yu Y, Deng W, Wu Y (2013) Positivity and boundedness preserving schemes for the fractional reaction-difusion equation. Science China Mathematics 56(10):2161–2178

    MathSciNet  MATH  Google Scholar 

  • Rihan FA, Lakshmanan S, Hashish AH, Rakkiyappan R, Ahmed E (2015) Fractional-order delayed predator-prey systems with Holling type-II functional response. Nonlinear Dynamics 80(1):777–789

    MathSciNet  MATH  Google Scholar 

  • Elsadany AA, Matouk AE (2015) Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization. Journal of Applied Mathematics and Computing 49(1):269–283

    MathSciNet  MATH  Google Scholar 

  • Yu Y, Deng W, Wu Y (2015) Positivity and boundedness preserving schemes for space-time fractional predator-prey reaction-diffusion model. Computers & Mathematics with Applications 69(8):743–759

    MathSciNet  MATH  Google Scholar 

  • Huang C, Cao J, Xiao M, Alsaedi A, Alsaadi FE (2017) Controlling bifurcation in a delayed fractional predator-prey system with incommensurate orders. Applied Mathematics and Computation 293:293–310

    MathSciNet  MATH  Google Scholar 

  • Li H, Zhang L, Hu C, Jiang Y, Teng Z (2017) Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge. Journal of Applied Mathematics and Computing 54(1):435–449

    MathSciNet  MATH  Google Scholar 

  • Wang Z, Xie Y, Lu J, Li Y (2019) Stability and bifurcation of a delayed generalized fractional-order prey-predator model with interspecific competition. Applied Mathematics and Computation 347:360–369

    MathSciNet  MATH  Google Scholar 

  • Kumar S, Kumar R, Cattani C, Samet B (2020) Chaotic behaviour of fractional predator-prey dynamical system. Chaos, Solitons & Fractals 135:109811

    MathSciNet  MATH  Google Scholar 

  • Yavuz M, Sene N (2020) Stability analysis and numerical computation of the fractional predator-prey model with the harvesting rate. Fractal and Fractional 4(3):35

    Google Scholar 

  • Owolabi KM (2021) Computational dynamics of predator-prey model with the power-law kernel. Results in Physics 21:103810

    Google Scholar 

  • Owolabi KM (2021) Numerical approach to chaotic pattern formation in diffusive predator-prey system with caputo fractional operator. Numerical Methods for Partial Differential Equations 37(1):131–151

    MathSciNet  Google Scholar 

  • Xie Y, Wang Z, Meng B, Huang X (2020) Dynamical analysis for a fractional-order prey-predator model with Holling III type functional response and discontinuous harvest. Applied Mathematics Letters 106:106342

    MathSciNet  MATH  Google Scholar 

  • Sun Z, Wu X (2006) A fully discrete difference scheme for a diffusion-wave system. Applied Numerical Mathematics 56(2):193–209

    MathSciNet  MATH  Google Scholar 

  • Li D, Wang J, Zhang J (2017) Unconditionally convergent \( L1 \)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM Journal on Scientific Computing 39(6):A3067–A3088

    MATH  Google Scholar 

  • Li D, Liao H, Sun W, Wang J, Zhang J (2018) Analysis of \(L1\)-Galerkin FEMs for time-fractional nonlinear parabolic problems. Communications in Computational Physics 24:86–103

    MathSciNet  MATH  Google Scholar 

  • Langlands T, Henry B (2005) The accuracy and stability of an implicit solution method for the fractional diffusion equation. Journal of Computational Physics 205(2):719–736

    MathSciNet  MATH  Google Scholar 

  • Gao G, Sun Z (2011) A compact finite difference scheme for the fractional sub-diffusion equations. Journal of Computational Physics 230(3):586–595

    MathSciNet  MATH  Google Scholar 

  • Jin B, Lazarov R, Zhou Z (2013) Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM Journal on Numerical Analysis 51(1):445–466

    MathSciNet  MATH  Google Scholar 

  • Karaagac B (2022) A Trigonometric Approach to Time Fractional FitzHugh-Nagumo Model on Nerve Pulse Propagation. Mathematical Sciences and Applications E-Notes 10(3):135–145

    Google Scholar 

  • Gao G, Sun Z, Zhang H (2014) A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. Journal of Computational Physics 259:33–50

    MathSciNet  MATH  Google Scholar 

  • Li M, Wei Y, Niu B, Zhao Y (2022) Fast \(L2\)-1\(\sigma \) Galerkin FEMs for generalized nonlinear coupled Schrödinger equations with Caputo derivatives. Applied Mathematics and Computation 416:126734

    MATH  Google Scholar 

  • Zhu H, Xu C (2019) A fast high order method for the time-fractional diffusion equation. SIAM Journal on Numerical Analysis 57(6):2829–2849

    MathSciNet  MATH  Google Scholar 

  • Alikhanov AA, Huang C (2021) A high-order \(L2\) type difference scheme for the time-fractional diffusion equation. Applied Mathematics and Computation 411:126545

    MathSciNet  MATH  Google Scholar 

  • Liao H, Tang T, Zhou T (2020) A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations. Journal of Computational Physics 414:109473

    MathSciNet  MATH  Google Scholar 

  • Li M, Gu X, Huang C, Fei M, Zhang G (2018) A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. Journal of Computational Physics 358:256–282

    MathSciNet  MATH  Google Scholar 

  • Guan Z, Wang X, Ouyang J (2021) An improved finite difference/finite element method for the fractional Rayleigh-Stokes problem with a nonlinear source term. Journal of Applied Mathematics and Computing 65:451–479

    MathSciNet  MATH  Google Scholar 

  • Liu N, Liu Y, Li H, Wang J (2018) Time second-order finite difference/finite element algorithm for nonlinear time-fractional diffusion problem with fourth-order derivative term. Computers & Mathematics with Applications 75(10):3521–3536

    MathSciNet  MATH  Google Scholar 

  • Luskin M (1979) A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions. SIAM Journal on Numerical Analysis 16(2):284–299

    MathSciNet  MATH  Google Scholar 

  • He Y, Sun W (2007) Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations. Mathematics of Computation 76(257):115–136

    MathSciNet  MATH  Google Scholar 

  • Shi D, Wang J, Yan F (2018) Superconvergence analysis for nonlinear parabolic equation with \(EQ_{1}^{{\rm rot}}\) nonconforming finite element. Computational and Applied Mathematics 37(1):307–327

    MathSciNet  MATH  Google Scholar 

  • Li B, Sun W (2012) Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. International Journal of Numerical Analysis and Modeling 10:622–633

    MathSciNet  MATH  Google Scholar 

  • Li B, Sun W (2013) Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM Journal on Numerical Analysis 51(4):1959–1977

    MathSciNet  MATH  Google Scholar 

  • Li M (2022) Cut-Off Error Splitting Technique for Conservative Nonconforming VEM for N-Coupled Nonlinear Schrödinger-Boussinesq Equations. Journal of Scientific Computing 93(3):1–44

    MATH  Google Scholar 

  • Gao H (2016) Unconditional optimal error estimates of BDF-Galerkin FEMs for nonlinear thermistor equations. Journal of Scientific Computing 66(2):504–527

    MathSciNet  MATH  Google Scholar 

  • Si Z, Wang J, Sun W (2016) Unconditional stability and error estimates of modified characteristics FEMs for the Navier-Stokes equations. Numerische Mathematik 134(1):139–161

    MathSciNet  MATH  Google Scholar 

  • Gao H (2014) Optimal error analysis of Galerkin FEMs for nonlinear joule heating equations. Journal of Scientific Computing 58(3):627–647

    MathSciNet  MATH  Google Scholar 

  • Li M, Shi D, Wang J, Ming W (2019) Unconditional superconvergence analysis of the conservative linearized Galerkin FEMs for nonlinear Klein-Gordon-Schrödinger equation. Applied Numerical Mathematics 142:47–63

    MathSciNet  MATH  Google Scholar 

  • Shi D, Yan F, Wang J (2016) Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation. Applied Mathematics and Computation 274:182–194

    MathSciNet  MATH  Google Scholar 

  • Shi D, Wang J (2017) Unconditional superconvergence analysis of a Crank-Nicolson Galerkin FEM for nonlinear Schrödinger equation. Journal of Scientific Computing 72:1093–1118

    MathSciNet  MATH  Google Scholar 

  • Thomée V (2007) Galerkin finite element methods for parabolic problems, Vol. 25, Springer Science & Business Media

  • Jiang S, Zhang J, Zhang Q, Zhang Z (2017) Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Communications in Computational Physics 21(3):650–678

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF of China (No. 11801527).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Li.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Additional information

Communicated by Frederic Valentin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Li, M. Unconditionally convergent and superconvergent FEMs for nonlinear coupled time-fractional prey–predator problem. Comp. Appl. Math. 42, 111 (2023). https://doi.org/10.1007/s40314-023-02261-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02261-6

Keywords

Mathematics Subject Classification

Navigation