Skip to main content
Log in

Intelligent Chaos Synchronization of Fractional Order Systems via Mean-Based Slide Mode Controller

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, a new mean-based adaptive fuzzy neural network sliding mode control is developed to perform the chaos synchronization among the master–slave fractional order uncertain systems. The mean-based expansion is adopted to replace the traditional Taylor expansion to transform a nonlinear function into a partially linear form for the linearization of nonlinear systems. In comparison with the traditional Taylor method, the proposed mean-based method can estimate the first-order derivative term on the identifier model, which will somehow alleviate the computational burden. Based on the learning algorithms, the adaptive laws and control laws can be tuned on-line to synchronize the master–slave fractional order uncertain systems. Furthermore, the stability of the closed-loop system can not only be assured but the synchronization deviation of external perturbation can also be alleviated. Finally, simulation examples are illustrated to demonstrate the feasibility and the synchronization performance of this new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic press, San Diego (1999)

    MATH  Google Scholar 

  2. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-order Systems and Controls—Fundamentals and Applications. Springer, London (2010)

    Book  MATH  Google Scholar 

  3. Vinagre, B.M., Feliu, V.: Modeling and control of dynamic systems using fractional calculus: application to electrochemical processes and flexible structures. In: Proceedings of 41st IEEE Conference on Decision and Control, Las Vegas (2002)

  4. Caponetto, R., Dongola, G., Fortuna, L., Petras, I.: Fractional Order Systems: Modeling and Control Applications. World Scientific Company, Singapore (2010)

    Google Scholar 

  5. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, New Jersey (2001)

    Google Scholar 

  6. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin (2010)

    Book  Google Scholar 

  7. Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst. 42(8), 485–490 (1995)

    Article  Google Scholar 

  8. Hegazi, A.S., Matouk, A.E.: Dynamical behaviors and synchronization in the fractional order hyperchaotic Chen system. Appl. Math. Lett. 24(11), 1938–1944 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ahmad, W.M., Sprott, J.C.: Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals 16(2), 339–351 (2003)

    Article  MATH  Google Scholar 

  10. Deng, W.H., Li, C.P.: Chaos synchronization of the fractional Lü system. Phys. A 353(1), 61–72 (2005)

    Article  Google Scholar 

  11. Chen, J.-H., Chen, W.-C.: Chaotic dynamics of the fractionally damped van der Pol equation. Chaos Solitons Fractals 35(1), 188–198 (2006)

    Article  Google Scholar 

  12. Ge, Z.-M., Ou, C.-Y.: Chaos in a fractional order modified Duffing system. Chaos Solitons Fractals 34(2), 262–291 (2007)

    Article  MATH  Google Scholar 

  13. Narang, A., Shah, S.L., Chen, T.: Continuous-time model identification of fractional-order models with time delays. IET Control Theory Appl. 5(7), 900–912 (2011)

    Article  MathSciNet  Google Scholar 

  14. Ding, Y., Wang, Z., Ye, H.: Optimal control of a fractional-order hiv-immune system with memory. IEEE Trans. Control Syst. Technol. 20(3), 763–769 (2012)

    Article  Google Scholar 

  15. N’Doye, I., Voos, H., Darouach, M.: Observer-based approach for fractional-order chaotic synchronization and secure communication. IEEE J. Emerg. Sel. Top. Circuits Syst. 20(3), 442–450 (2013)

    Article  MathSciNet  Google Scholar 

  16. Lin, T.-C., Lee, T.-Y., Balas, V.E.: Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order systems. Chaos Solitons Fractals 44(10), 791–801 (2011)

    Article  MATH  Google Scholar 

  17. Utkin, V.I.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yahyazadeh, M., Noei, A.R., Ghaderi, R.: Synchronization of chaotic systems with known and unknown parameters using a modified active sliding mode control. ISA Trans. 50(2), 262–267 (2011)

    Article  Google Scholar 

  19. Aghababa, M.P.: Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2670–2681 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Faieghi, M.R., Delavari, H.: Chaos in fractional-order Genesio-Tesi system and its synchronization. Commun. Nonlinear Sci. Numer. Simul. 17(2), 731–741 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang, W.-Y., Chen, M.-C., Su, S.-F.: Hierarchical T-S fuzzy-neural control of anti-lock braking system and active suspension in a vehicle. Automatica 48(8), 1698–1706 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Chien, Y.-H., Wang, W.-Y., Leu, Y.-G., Lee, T.-T.: Robust adaptive controller design for a class of uncertain nonlinear systems using online t-s fuzzy-neural modeling approach. IEEE Trans. Syst. Man Cybern. PART B Cybern. 41(2), 542–552 (2011)

    Article  Google Scholar 

  23. Lin, F.-J., Chou, P.-H., Fung, R.-F.: RFNN control for PMLSM Drive via backstepping technique. IEEE Trans. Aerosp. Electron. Syst. 41(2), 620–644 (2005)

    Article  Google Scholar 

  24. Hsu, C.-F., Lin, C.-M., Lee, T.-T.: Wavelet adaptive backstepping control for a class of nonlinear systems. IEEE Trans. Neural Netw. 17(5), 1175–1183 (2006)

    Article  Google Scholar 

  25. Lin, T.-C., Lee, T.-Y.: Chaos synchronization of uncertain fractional order chaotic systems with time delay based on adaptive fuzzy sliding mode control. IEEE Trans. Fuzzy Syst. 19(4), 623–635 (2011)

    Article  Google Scholar 

  26. Wai, R.-J., Chang, L.-J.: Stabilizing and tracking control of nonlinear dual-axis inverted-pendulum system using fuzzy neural network. IEEE Trans. Fuzzy Syst. 14(1), 145–169 (2006)

    Article  Google Scholar 

  27. Wai, R.-J., Shih, L.-C.: Adaptive fuzzy-neural-network design for voltage tracking control of a DC–DC boost converter. IEEE Trans. Power Electron. 27(4), 2104–2115 (2012)

    Article  Google Scholar 

  28. Zhao, X., Zhang, L., Shi, P., Karimi, H.R.: Novel stability criteria for T-S fuzzy systems. IEEE Trans. Fuzzy Syst. 22(2), 313–323 (2014)

    Article  Google Scholar 

  29. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5, 1–6 (1997)

    MATH  MathSciNet  Google Scholar 

  31. Tavazoei, M.S.: Comments on Chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control. IEEE Trans. Fuzzy Syst. 20(5), 993–995 (2012)

    Article  Google Scholar 

  32. Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187(2), 777–784 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wang, L.X.: Adaptive Fuzzy Systems and Control. Prentice Hall, Berkeley (1994)

    Google Scholar 

  34. Wang, W.-Y., Chien, Y.-H., Lee, T.-T.: Observer-based T-S fuzzy control for a class of general nonaffine nonlinear systems using generalized projection-update laws. IEEE Trans. Fuzzy Syst. 19(3), 493–504 (2011)

    Article  Google Scholar 

  35. Wang, C.-H., Wen, J.-S.: On the equivalence of a table lookup (TL) technique and fuzzy neural network (FNN) with block pulse membership functions (BPMFs) and its application to water injection control of an automobile. IEEE Trans. Syst Man Cybern. Part C Appl. Rev. 38(4), 574–580 (2008)

    Article  Google Scholar 

  36. Larson, R., Edwards, B.H., Heyd, D.E.: Calculus 7th. Houghton Mifflin Company, Massachusetts (2002)

    Google Scholar 

  37. Chen, C.-Y., Hong, C.-M., Leu, Y.-G.: Nonlinear parameter fuzzy control for uncertain systems with only system output measurement. In: IEEE International Conference on Fuzzy Systems, pp. 1216–1220 (2009)

  38. Diethelm, K., Ford, N.J., Freed, A.D.A.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Hsu Wang.

Appendix

Appendix

Consider the following fractional differential equation:

$$ \begin{aligned} D_{t}^{\alpha } y(t) & = f(y(t),t),\quad 0 \le t \le T \\ y^{(k)} (0) & = y_{0}^{(k)} ,\quad k = 0,1,2, \ldots ,m - 1 \\ \end{aligned}, $$
(51)

which is equivalent to the Volterra integral equation [38] described as

$$ y(t) = \sum\limits_{k = 0}^{m - 1} {y_{0}^{(k)} \frac{{t^{k} }}{k!} + \frac{1}{\Gamma (\alpha )}} \int_{0}^{\text{T}} {(t - \lambda )}^{\alpha - 1} f(y(\lambda ),\lambda ){d}\lambda $$
(52)

Setting \( h = {\raise0.7ex\hbox{$T$} \!\mathord{\left/ {\vphantom {T N}}\right.\kern-0pt} \!\lower0.7ex\hbox{$N$}} \), t n  = nh, n = 0, 1, 2,…, N. Thus, the above Eq. (52) can be discretized as

$$ y_{h} \left( {t_{n + 1} } \right) = \sum\limits_{k = 0}^{m - 1} {y_{0}^{(k)} \frac{{t_{n + 1}^{k} }}{k!} + \frac{{h^{\alpha } }}{\Gamma (\alpha + 2)}} f\left( {y_{h}^{p} (t_{n + 1} ),t_{n + 1} } \right) + \frac{{h^{\alpha } }}{\Gamma (\alpha + 2)}\sum\limits_{j = 0}^{n} {a_{j,n + 1} f\left( {y_{h} (t_{j} ),t_{j} } \right)}, $$
(53)

where

$$ a_{j,n + 1} = \left\{ \begin{array}{ll} n^{\alpha + 1} - (n - \alpha )(n + 1)^{\alpha }, & j = 0 \\ (n - j + 2)^{\alpha + 1} + (n - j)^{\alpha + 1} - 2(n - j + 1)^{\alpha + 1} , & 1 \le j \le n \\ 1, & j = n + 1 \end{array} \right. $$
(54)

and the predicted value \( y_{h}^{p} (t_{n = 1}) \) is determined by

$$ y_{h}^{p} (t_{n + 1} ) = \sum\limits_{k = 0}^{m - 1} {y_{0}^{(k)} \frac{{t_{n + 1}^{k} }}{k!} + \frac{1}{\Gamma (\alpha )}} \sum\limits_{j = 0}^{n} {b_{j,n + 1} f\left( {y_{h} (t_{j} ),t_{j} } \right)}. $$
(55)
$$ b_{j,n + 1} = \frac{{h^{\alpha } }}{\alpha }\left( {\left( {n + 1 - j} \right)^{\alpha } + (n - j)^{\alpha } } \right). $$
(56)

The approximation error is given as

$$ \hbox{max} \left| {y\left( {t_{j} } \right) - y_{h} \left( {t_{j} } \right)} \right| = O(h^{p} ), \quad j = 1,2, \ldots ,N, $$
(57)

where p = min (2, 1 + α).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CH., Chen, CY. Intelligent Chaos Synchronization of Fractional Order Systems via Mean-Based Slide Mode Controller. Int. J. Fuzzy Syst. 17, 144–157 (2015). https://doi.org/10.1007/s40815-015-0030-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-015-0030-7

Keywords

Navigation