Skip to main content
Log in

Credit Rating Analysis by the Decision-Tree Support Vector Machine with Ensemble Strategies

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The recent financial tsunami and subprime crisis both triggered an excessive global financial decline. Since then, the ability to ensure the creditworthiness of firms, the development of a suitable credit rating mechanism and appropriate rating policies have become critical issues for most financial institutions. Credit rating is a multi-classification task. The decision-tree support vector machine (DTSVM) has been one of the most powerful models in dealing with multi-classification problems. However, the determination of important data features significantly affects the computation time and classification accuracy of DTSVM models. In addition, the inability to provide rules for decision-makers limits the practical applications of DTSVM models. This study proposes an M-DTSVM-RST model which integrates the unique strength of multiple feature selection strategies in feature determination, DTSVM in multi-classification, and rough set theory (RST) in rule generation. The advantages of the designed M-DTSVM-RST model include the ensemble learning ability in selecting essential attributes, the capability in yielding rules for decision-makers in multi-classification cases by the DTSVM technique with RST. Experimental results show that the M-DTSVM-RST model is a promising alternative in analyzing the credit rating problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abad, P., Robles, M.D.: Credit rating agencies and idiosyncratic risk: is there a linkage? Evidence from the Spanish market. Int. Rev. Econ. Finance 33, 152–171 (2014)

    Article  Google Scholar 

  2. Barakat, N., Diederich, J.: Eclectic rule-extraction from support vector machines. Int. J. Comput. Intell. 2, 59–62 (2005)

    Google Scholar 

  3. Bose, I.: Deciding the financial health of dot-coms using rough sets. Inf. Manag. 43, 835–846 (2006)

    Article  Google Scholar 

  4. Bottou, l., Cortes, C., Denker, J., Drucker, H., Guyon, I., Jackel, L., LeCun, Y., Muller, U., Sackinger, E., Simard, P., Vapnik, V.: Comparison of classifier methods: a case study in hand writing digit recognition. In: Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, pp. 77–82 (1994)

  5. Capotorti, A., Barbanera, E.: Credit scoring analysis using a fuzzy probabilistic rough set model. Comput. Stat. Data Anal. 56, 981–994 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chang, F., Guo, C.Y., Lin, X.R., Lu, C.J.: Tree decomposition for large-scale SVM Problems. J. Mach. Learn. Res. 11, 2935–2972 (2010)

    MATH  MathSciNet  Google Scholar 

  7. Chang, F., Liu, C.C.: Solving large-scale multi-label SVM problems with a tree decomposition approach. In: The 3rd Asian Conference on Machine Learning, Taoyuan, pp. 1–16 (2011)

  8. Chaudhuri, A., De, K.: Fuzzy support vector machine for bankruptcy prediction. Appl. Soft Comput. 11, 2472–2486 (2011)

    Article  Google Scholar 

  9. Chen, Y.S., Cheng, C.H.: Hybrid models based on rough set classifiers for setting credit rating decision rules in the global banking industry. Knowl.-Based Syst. 39, 224–239 (2013)

    Article  Google Scholar 

  10. Chen, C.C., Li, S.T.: Credit rating with a monotonicity-constrained support vector machine model. Expert Syst. Appl. 41, 7235–7247 (2014)

    Article  Google Scholar 

  11. Cortes, C., Vapnik, V.: Support-vector network. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  12. Deng, J.D., Simmermacher, C., Cranefield, S.: “A study on feature analysis for musical instrument classification”, IEEE Transactions on Systems, Man, and Cybernetics—Part B. Cybernetics 38, 429–438 (2008)

    Google Scholar 

  13. Fung, G., Sandilya, S., Rao, R.: Rule extraction from linear support vector machines. In: Proceedings of the Eleventh SIGKDD International Conference on Knowledge Discovery and Data Mining, Illinois, pp. 32–40 (2005)

  14. Friedman, J.: Another approach to polychotomous classification. Technical Report, Stanford University (1996)

  15. Hajek, P., Michalak, K.: Feature selection in corporate credit rating prediction. Knowl.-Based Syst. 51, 72–84 (2013)

    Article  Google Scholar 

  16. Hanilçi, C., Ertaş, F.: Investigation of the effect of data duration and speaker gender on text-independent speaker recognition. Comput. Electr. Eng. 39, 441–452 (2013)

    Article  Google Scholar 

  17. Hou, S., Ramani, K.: Classifier combination for sketch-based 3D part retrieval. Comput. Graph. 31, 598–609 (2007)

    Article  Google Scholar 

  18. Hsu, M.F., Pai, P.F.: Incorporating support vector machines with multiple criteria decision making for financial crisis analysis. Qual. Quant. 47, 3481–3492 (2013)

    Article  Google Scholar 

  19. Huang, C.C., Tseng, T.L., Fan, Y.N., Hsu, C.H.: Alternative rule induction methods based on incremental object using rough set theory. Appl. Soft Comput. 13, 372–389 (2013)

    Article  Google Scholar 

  20. Huang, Z., Chen, H., Hsu, C.J., Chen, W.H., Wu, S.: Credit rating analysis with support vector machines and neural networks: a market comparative. Decis. Support Syst. 37, 543–558 (2004)

    Article  Google Scholar 

  21. Hwang, R.C., Chung, H., Chu, C.K.: Predicting issuer credit ratings using a semiparametric method. J. Empir. Finance 17, 120–137 (2010)

    Article  Google Scholar 

  22. Jia, J., Yang, N., Zhang, C., Yue, A., Yang, J., Zhu, D.: Object-oriented feature selection of high spatial resolution images using an improved Relief algorithm. Math. Comput. Model. 58, 619–626 (2013)

    Article  Google Scholar 

  23. Joachims, T.: Making large-scale support vector machine learning practical. In: Schlkopf, B., Burges, C.J., Smola, A.J. (eds.) Advances in Kernel Methods—Support Vector Learning, pp. 169–184. MIT Press, Cambridge (1999)

    Google Scholar 

  24. Kabir, MdM, Islam, MdM, Murase, K.: A new wrapper feature selection approach using neural network. Neurocomputing 73, 3273–3283 (2010)

    Article  Google Scholar 

  25. Klautau, A., Jevtic, N., Orlitsky, A.: On nearest-neighbor error-correcting output codes with application to all-pairs multiclass support vector machines. J. Mach. Learn. Res. 4, 1–15 (2003)

    MathSciNet  Google Scholar 

  26. Kim, H.S., Sohn, S.Y.: Support vector machines for default prediction of SMEs based on technology. Eur. J. Oper. Res. 201, 838–846 (2010)

    Article  MATH  Google Scholar 

  27. Kim, K., Ahn, H.: A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach. Comput. Oper. Res. 39, 1800–1811 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kreßel, U.: Pairwise classification and support vector machines. In: Schölkopf, B., Burges, C.I., Smola, A.J. (eds.) Advances in Kernel Methods—Support Vector Learning, pp. 255–268. MIT Press, Cambridge (1999)

    Google Scholar 

  29. Kullback, S.: An application of information theory to multivariate analysis. Ann. Math. Stat. 23, 88–102 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kumar, M.A., Gopal, M.: A comparison study on multiple binary-class SVM methods for unilabel text categorization. Pattern Recogn. Lett. 31, 1437–1444 (2010)

    Article  Google Scholar 

  31. Liou, J.H., Tzeng, G.H.: A Dominance-based Rough Set Approach to customer behavior in the airline market. Inf. Sci. 180, 2230–2238 (2010)

    Article  Google Scholar 

  32. Li, F., Yin, Y., Lu, L.: (ϑ, T)-fuzzy rough approximation operators and the TL-fuzzy rough ideals on a ring. Inf. Sci. 177, 4711–4726 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lin, K.P., Pai, P.F., Lu, Y.M., Chang, P.T.: Revenue forecasting using a least-squares support vector regression model in a fuzzy environment. Inf. Sci. 220, 196–209 (2013)

    Article  Google Scholar 

  34. Li, C.F., Yin, J.Y.: Variational Bayesian independent component analysis-support vector machine for remote sensing classification. Comput. Electr. Eng. 39, 717–726 (2013)

    Article  Google Scholar 

  35. Martens, D., Baesens, B., Gestel, T.V.: De-compositional rule extraction from support vector machines by active learning. IEEE Trans. Knowl. Data Eng. 21, 178–191 (2009)

    Article  Google Scholar 

  36. Nguyen, H.S., Nguyen, S.H.: Analysis of Stulong data by rough set exploration system (RSES). In: The 14th European Conference on Machine Learning (ECML) and the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases, Cavtat, pp. 71–82 (2003)

  37. Öğüt, H., Doğanay, M.M., Ceylan, N.B., Aktaş, R.: Prediction of bank financial strength ratings: the case of Turkey. Econ. Model. 29, 632–640 (2012)

    Article  Google Scholar 

  38. Pawlak, Z.: Rough sets. Int. J. Inf. Comput. Sci. 11, 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  39. Paleologo, G., Elisseeff, A., Antonini, G.: Subagging for credit scoring models. Eur. J. Oper. Res. 201, 490–499 (2010)

    Article  Google Scholar 

  40. Peng, Y., Wang, G., Kou, G., Shi, Y.: An empirical study of classification algorithm evaluation for financial risk prediction. Appl. Soft Comput. 11, 2906–2915 (2011)

    Article  Google Scholar 

  41. Platt, J.C., Cristianini, N., Shawe-Taylor, J.: Large margin DAGs for multiclass classification. In: Jordan, M., Keams, M., SoJla, S. (eds.) Advances in Neural Information Processing Systems, vol. 12, pp. 547–553. MIT Press, Cambridge (2000)

    Google Scholar 

  42. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Schlkopf, B., Burges, C.J., Smola, A.J. (eds.) Advances in Kernel Methods—Support Vector Learning, pp. 169–184. MIT Press, Cambridge (1998)

    Google Scholar 

  43. Pudil, P., Novovicova, J., Kittler, J.: Floating search methods in feature selection. Pattern Recogn. Lett. 15, 1119–1125 (1994)

    Article  Google Scholar 

  44. Qian, H., Mao, Y., Xiang, W., Wang, Z.: Recognition of human activities using SVM multi-class classifier. Pattern Recognit. Lett. 31, 100–111 (2010)

    Article  Google Scholar 

  45. Ren, J.: ANN vs. SVM: which one performs better in classification of MCCs in mammogram imaging. Knowl.-Based Syst. 26, 144–153 (2012)

    Article  Google Scholar 

  46. Scherbart, A., Nattkemper, T.W.: Looking inside self-organizing map ensembles with resampling and negative correlation learning. Neural. Netw. 24, 130–141 (2011)

    Article  MATH  Google Scholar 

  47. Sun, J., Li, H.: Financial distress prediction using support vector machines: ensemble vs. individual. Appl. Soft Comput. 12, 2254–2265 (2012)

    Article  Google Scholar 

  48. Smyth, P., Goodman, R.M.: Rule induction using information theory. In: Piatetsky-Shapiro, G., Frawley, W. (eds.) Knowledge Discovery in Databases, pp. 169–184. MIT Press, Cambridge (1991)

    Google Scholar 

  49. Tsai, C.F., Hsiao, Y.C.: Combining multiple feature selection methods for stock prediction: union, intersection, and multi-intersection approaches. Decis. Support Syst. 50, 258–269 (2010)

    Article  Google Scholar 

  50. Uğuz, H.: A hybrid system based on information gain and principal component analysis for the classification of transcranial Doppler signals. Comput. Methods Programs Biomed. 107, 598–609 (2012)

    Article  Google Scholar 

  51. Vapnik, V.: The Nature of Statistical Learning Theory. Springer Verlag, New York (1995)

    Book  MATH  Google Scholar 

  52. Vieira, S.M., Sousa, J.M.C., Kaymak, U.: Fuzzy criteria for feature selection. Fuzzy Sets Syst. 189, 1–18 (2012)

    Article  MathSciNet  Google Scholar 

  53. Wang, G., Ma, J.: A hybrid ensemble approach for enterprise credit risk assessment based on Support Vector Machine. Expert Syst. Appl. 39, 5325–5331 (2012)

    Article  Google Scholar 

  54. Wang, G., Hao, J., Ma, J., Jiang, H.: A comparative assessment of ensemble learning for credit scoring. Expert Syst. Appl. 38, 223–230 (2011)

    Article  Google Scholar 

  55. Whitney, A.: A direct method of nonparametric measurement selection. IEEE Trans. Comput. 20, 1100–1103 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  56. Witlox, F., Tindemans, H.: The application of rough sets analysis in activity-based modelling, opportunities and constraints. Expert Syst. Appl. 27, 585–592 (2004)

    Article  Google Scholar 

  57. Wang, A., Yuan, W., Liu, J., Yu, Z., Li, H.: A novel pattern recognition algorithm: combining ART network with SVM to reconstruct a multi-class classifier. Comput. Math Appl. 57, 1908–1914 (2009)

    Article  MATH  Google Scholar 

  58. Xia, H.: Can investor-paid credit rating agencies improve the information quality of issuer-paid rating agencies? J. Financ. Econ. 111, 450–468 (2014)

    Article  Google Scholar 

  59. Xie, J., Wang, C.: Using support vector machines with a novel hybrid feature selection method for diagnosis of erythemato-squamous diseases. Expert Syst. Appl. 38, 5809–5815 (2011)

    Article  Google Scholar 

  60. Yap, B.W., Ong, S.H., Husain, N.H.M.: Using data mining to improve assessment of credit worthiness via credit scoring models. Expert Syst. Appl. 38, 13274–13283 (2011)

    Article  Google Scholar 

  61. Zhong, H., Miao, C., Shen, Z., Feng, Y.: Comparing the learning effectiveness of BP, ELM, I-ELM, and SVM for corporate credit ratings. Neurocomputing 128, 285–295 (2014)

    Article  Google Scholar 

  62. Zhu, P., Hu, Q.: Rule extraction from support vector machines based on consistent region covering reduction. Knowl.-Based Syst. 42, 1–8 (2013)

    Article  Google Scholar 

  63. Zhu, D., Premkumar, G., Zhang, X., Chu, C.H.: Data mining for network intrusion detection: a comparison of alternative methods. Decis. Sci. 32, 1–26 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ministry of Science and Technology of the Republic of China, Taiwan, for financially supporting this research under Contract Numbers NSC 101-2410-H-260-005-MY2 and MOST 103-2410-H-260-020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping-Feng Pai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pai, PF., Tan, YS. & Hsu, MF. Credit Rating Analysis by the Decision-Tree Support Vector Machine with Ensemble Strategies. Int. J. Fuzzy Syst. 17, 521–530 (2015). https://doi.org/10.1007/s40815-015-0063-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-015-0063-y

Keywords

Navigation