Skip to main content
Log in

L 2-Gain Control for T-S Fuzzy Systems Over an Event-Triggered Communication Network Using Delay Decomposition and Deviation Bounds of Membership Functions

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper is concerned with networked \(L_2\)-gain control for a T-S fuzzy system over an event-triggered communication network. Taking an event-triggered communication scheme and network-induced delays into consideration, the networked control system is described by an asynchronous T-S fuzzy system with an interval time-varying delay. Due to variation characteristic of network-induced delays, the interval is decomposed into N subintervals and the jumping among these subintervals is governed by a Markov chain. A new relaxation method, which fully utilizes the convexity of normalized membership functions and the deviation bounds of asynchronous normalized membership functions, is proposed and a stochastic Lyapunov–Krasovskii functional is constructed to derive some delay-dependent criteria on \(L_2\)-gain performance analysis and controller design of the asynchronous T-S fuzzy system. An illustrative example is provided to show that the proposed criteria are of less conservatism and less computational complexity than some existing results, and are effective in achieving a prescribed \(L_2\)-gain performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gupta, R.A., Chow, M.Y.: Networked control system: overview and research trends. IEEE Trans. Ind. Electron. 57(7), 2527–2535 (2010)

    Article  Google Scholar 

  2. Napoles, J., Watson, A.J., Padilla, J.J., Leon, J.I., Franquelo, L.G., Wheeler, P.W., Aguirre, M.A.: Selective harmonic mitigation technique for cascaded h-bridge converters with nonequal dc link voltages. IEEE Trans. Ind. Electron. 60(5), 1963–1971 (2013)

    Article  Google Scholar 

  3. Romero-Cadaval, E., Spagnuolo, G., Franquelo, L.G., Ramos-Paja, C.A., Suntio, T., Xiao, W.M.: Grid-connected photovoltaic generation plants components and operation. IEEE Ind. Electron. Mag. 7(3), 6–20 (2013)

    Article  Google Scholar 

  4. Zhang, W., Branicky, M.S., Phillips, S.M.: Stability of networked control systems. IEEE Control Syst. Mag. 21(1), 84–99 (2001)

    Article  Google Scholar 

  5. Zhang, L., Gao, H., Kaynak, O.: Network-induced constraints in networked control systems—a survey. IEEE Trans. Ind. Inf. 9(1), 403–416 (2013)

    Article  Google Scholar 

  6. Wang, T., Gao, H., Qiu, J.: A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Trans. Neural Netw. Learn. Syst. (2015). doi:10.1109/TNNLS.2015.2411671

  7. Zhang, D., Han, Q.L., Jia, X.: Network-based static output feedback tracking control for a class of systems using the positive effects of network-induced delays. In: American Control Conference (ACC), pp. 5676–5681 (2012)

  8. Zhang, D., Han, Q.L., Jia, X.: Network-based output tracking control for a class of T-S fuzzy systems that can not be stabilized by nondelayed output feedback controllers. IEEE Trans. Cybern. 45(8), 1511–1524 (2015)

    Article  Google Scholar 

  9. Yang, F., Zhang, H., Hui, G., Wang, S.: Mode-independent fuzzy fault-tolerant variable sampling stabilization of nonlinear networked systems with both time-varying and random delays. Fuzzy Sets Syst. 207, 45–63 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yue, D., Han, Q.L., Lam, J.: Network-based robust \(H_\infty\) control of systems with uncertainty. Automatica 41(6), 999–1007 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, H., Chen, T., Lam, J.: A new delay system approach to network-based control. Automatica 44(1), 39–52 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, D., Nguang, S.K.: State feedback control of uncertain networked control systems with random time delays. IEEE Trans. Autom. Control 53(3), 829–834 (2008)

    Article  MathSciNet  Google Scholar 

  13. Zhang, L., Shi, Y., Chen, T., Huang, B.: A new method for stabilization of networked control systems with random delays. IEEE Trans. Autom. Control 50(8), 1177–1181 (2005)

    Article  MathSciNet  Google Scholar 

  14. Peng, C., Yang, T.C.: Communication-delay-distribution-dependent networked control for a class of T-S fuzzy systems. IEEE Trans. Fuzzy Syst. 18(2), 326–335 (2010)

    MathSciNet  Google Scholar 

  15. Li, H., Yu, J., Hilton, C., Liu, H.: Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach. IEEE Trans. Ind. Electron. 60(8), 3328–3338 (2013)

    Article  Google Scholar 

  16. Chiu, C.S., Li, Z., Chen, Y.: T-S fuzzy direct maximum power point tracking of wind energy conversion systems. Int. J. Fuzzy Syst. 15(2), 192–202 (2013)

    Google Scholar 

  17. Yu, G.R., You, C.S.: Nonlinear robust control of fuzzy time-delay systems. Int. J. Fuzzy Syst. 11(1), 29–35 (2009)

    MathSciNet  Google Scholar 

  18. Jiang, X.: On sampled-data fuzzy control design approach for T-S model-based fuzzy systems by using discretization approach. Inf. Sci. 296, 307–314 (2015)

    Article  MathSciNet  Google Scholar 

  19. Jiang, X., Han, Q.L.: On designing fuzzy controllers for a class of nonlinear networked control systems. IEEE Trans. Fuzzy Syst. 16(4), 1050–1060 (2008)

    Article  Google Scholar 

  20. Wang, Y., Zhang, H., Zhang, J., Wang, Y.: An sos-based observer design for discrete-time polynomial fuzzy systems. Int. J. Fuzzy Syst. 17(1), 94–104 (2015)

    Article  MathSciNet  Google Scholar 

  21. Boldbaatar, E.A., Lin, C.M.: Self-learning fuzzy sliding-mode control for a water bath temperature control system. Int. J. Fuzzy Syst. 17(1), 31–38 (2015)

    Article  Google Scholar 

  22. Tong, S.C., Li, Y.M., Feng, G., Li, T.S.: Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B 41(4), 1124–1135 (2011)

    Article  Google Scholar 

  23. Tong, S.C., Sui, S., Li, Y.M.: Fuzzy adaptive output feedback control of MIMO nonlinear systems with partial tracking errors constrained. IEEE Trans. Fuzzy Syst. 23(4), 729–742 (2015)

    Article  Google Scholar 

  24. Li, Y.M., Tong, S.C., Li, T.S.: Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control directions and unknown dead zones. IEEE Trans. Fuzzy Syst. 23(4), 1228–1241 (2015)

    Article  Google Scholar 

  25. Li, H., Sun, X., Wu, L., Lam, H.K.: State and output feedback control of a class of fuzzy systems with mismatched membership functions. IEEE Trans. Fuzzy Syst. (2015). doi:10.1109/TFUZZ.2014.2387876

  26. Li, H., Wu, C., Yin, S., Lam, H.K.: Observer-based fuzzy control for nonlinear networked systems under unmeasurable premise variables. IEEE Trans. Fuzzy Syst. (2015). doi:10.1109/TFUZZ.2015.2505331

  27. Li, H., Gao, Y., Shi, P., Lam, H.K.: Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity. IEEE Trans. Autom. Control (2015). doi:10.1109/TAC.2015.2503566

  28. Li, H., Wu, C., Shi, P., Gao, Y.: Control of nonlinear networked systems with packet dropouts: interval type-2 fuzzy model-based approach. IEEE Trans. Cybern. (2014). doi:10.1109/TCYB.2014.2371814

  29. Li, H., Gao, Y., Wu, L., Lam, H.K.: Fault detection for T-S fuzzy time-delay systems: delta operator and input-output methods. IEEE Trans. Cybern. 45(2), 229–241 (2015)

    Article  Google Scholar 

  30. Jia, X., Zhang, D., Hao, X., Zheng, N.: Fuzzy \(H_{\infty }\) tracking control for nonlinear networked control systems in T-S fuzzy model. IEEE Trans. Syst. Man Cybern. Part B 39(4), 1073–1079 (2009)

    Article  Google Scholar 

  31. Jia, X., Chi, X., Han, Q.L., Zheng, N.: Event-triggered fuzzy \(H_{\infty }\) control for a class of nonlinear networked control systems using the deviation bounds of asynchronous normalized membership functions. Inf. Sci. 259, 100–117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, D., Han, Q.L., Jia, X.: Network-based output tracking control for T-S fuzzy systems using an event-triggered communication scheme. Fuzzy Sets Syst. 273(15), 26–48 (2015)

    Article  MathSciNet  Google Scholar 

  33. Peng, C., Yue, D., Fei, M.: Relaxed stability and stabilization conditions of networked fuzzy control systems subject to asynchronous grades of membership. IEEE Trans. Fuzzy Syst. 22(5), 1101–1112 (2014)

    Article  Google Scholar 

  34. Zhang, X.M., Han, Q.L.: Network-based \({\text{ H }}_{\infty }\) filtering using a logic jumping-like trigger. Automatica 49(5), 1428–1435 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control systems. Proc. IEEE 95(1), 138–162 (2007)

    Article  Google Scholar 

  36. Xiong, J., Lam, J.: Stabilization of linear systems over networks with bounded packet loss. Automatica 43(1), 80–87 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, X., Han, Q.L.: Novel delay-derivative-dependent stability criteria using new bounding techniques. Int. J. Robust Nonlinear Control 23(13), 1419–1432 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Peng, C., Fei, M.R.: An improved result on the stability of uncertain T-S fuzzy systems with interval time-varying delay. Fuzzy Sets Syst. 212(1), 97–109 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Han, Q.L.: Improved stability criteria and controller design for linear neutral systems. Automatica 45(8), 1948–1952 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Natural Science Foundation of China under Grant Nos. 61403240, 61374059, and 61573230, and the Research Project supported by Shanxi Scholarship Council of China (2015-016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Zhang.

Appendices

Appendix 1: Proof of Theorem 1

For the system (11), define a new process \(\{(x_t,r(t)),\ t\!\ge \!0\}\) by \(\{x_t(s)\!=\!x(t+s),\ -\tau (t,r(t))\!\le \! s\!\le \!0\}\). Now we construct a stochastic Lyapunov–Krasovskii functional (LKF)

$$V(x_t,r(t),t)=\sum _{i=1}^4V_i(x_t,r(t),t)\quad t\in \Omega _{l,k},$$
(26)

where

$$\begin{aligned} V_1(x_t,r(t),t)&=V_1(x_t)=x^T(t)Px(t), \\ V_2(x_t,r(t),t)&=V_2(x_t,t)=\int _{t-\tau _m}^tx^T(s)Q_1x(s){\mathrm{d}}s+\int _{t-\tau _M}^tx^T(s)Q_2x(s){\mathrm{d}}s, \\ V_3(x_t,r(t),t)&=V_3(x_t,t)=\int _{-\tau _M}^{-\tau _m}\int _{t+\theta }^t\dot{x}^T(s)R_1\dot{x}(s){\mathrm{d}}s{\mathrm {d}}\theta + \int _{-\tau _m}^0\int _{t+\theta }^t\dot{x}^T(s)R_2\dot{x}(s){\mathrm{d}}s{\mathrm{d}}\theta ,\\ V_4(x_t,r(t),t)&=(\tau _M\!-\!\tau (t,r(t)))\{[x^T(t)\!-\!x^T(s_k)]W_1[x(t)\!-\!x(s_k)]\!+\!\int _{s_k}^t\dot{x}^T(s)W_2\dot{x}(s){\mathrm{d}}s\}, \end{aligned}$$

\(P\!>\!0, Q_i\!>\!0,R_i\!>\!0\) , and \(W_i\!>\!0 \ (i\!=\!1,2)\), \(s_k\!=\!i_k^lh\!+\!\tau _{t_k+l}\), and \(x_t\!=\!x(t\!+\!\theta ), \ \theta \!\in \![-\tau _M,0]\) is an element of Banach space \({\mathcal {C}}([-\tau _M,0],R^n)\) of continuous functions from \([-\tau _M,0]\) to \(R^n\).

First, \(W_1,W_2\)-dependent terms in the LKF (26) are discontinuous at updating instants \(\{i_k^lh\!+\!\tau _{t_k+l}\}_{k=0, l=0}^{\infty ,N_k},\) and they are non-negative just before \(i_k^lh\!+\!\tau _{t_k+l}\) and become zero just after \(i_k^lh\!+\!\tau _{t_k+l}\); the other terms are continuous, i.e., \(\lim _{t\rightarrow (i_k^lh+\tau _{t_k+l})^{-}}V_4(x_t,r(t),t)\!\ge \!0\) and \(\lim _{t\rightarrow (i_k^lh+\tau _{t_k+l})^{+}}V_4(x_t,r(t),t)\!=\!0\). This implies \(V(s_k^+)\!\le \!V(s_k^-)\).

Second, we prove the stochastic stability for the system (11) with \(\omega (t)=0\). Let \({\mathcal {L}}\) be the weak infinitesimal generator of \(\{(x_t,r(t)),t\ge 0\}\), then for \(r(t)=p\in {\mathcal {I}}\), we have

$$\begin{aligned} {\mathcal {L}}V=&2x^T(t)P\dot{x}(t)\!+\!x^T(t)Q_1x(t)\!\!-\!\!x^T(t\!\!-\!\!\tau _m)Q_1x(t\!\!-\!\!\tau _m)\!+\!x^T(t)Q_2x(t)\!\!-\!\!x^T(t\!\!-\!\!\tau _M)Q_2x(t\!\!-\!\!\tau _M) \\&+(\tau _M\!\!-\!\!\tau _m)\dot{x}^T(t)R_1\dot{x}(t)\;-\;\int _{t\!-\!\tau _M}^{t\!-\!\tau _m}\dot{x}^T(s)R_1\dot{x}(s){\mathrm{d}}s\!+\! \tau _m\dot{x}^T(t)R_2\dot{x}(t)\;-\;\int _{t\!-\!\tau _m}^t\dot{x}^T(s)R_2\dot{x}(s){\mathrm{d}}s \\&+(\tau _M\!-\!\tau (t,p))x^T(t)W_1\dot{x}(t)\!+\!(\tau _M\!-\!\tau (t,p))\dot{x}^T(t)W_1x(t)\!+\!(\tau (t,p)\!-\!\tau _M)x^T(s_k)W_1\dot{x}(t) \\&+(\tau (t,p)\!-\!\tau _M)\dot{x}^T(t)W_1x(s_k)\!+\!\tau _M\dot{x}^T(t)W_2\dot{x}(t)\!-\! \tau (t,p)\dot{x}^T(t)W_2\dot{x}(t) \\&-\sum _{q=1}^N\lambda _{pq}\tau (t,q)[x^T(t)\!-\!x^T(s_k)]W_1 [x(t)\!-\!x(s_k)]\!-\!\sum _{q=1}^N\lambda _{pq}\tau (t,q)\int _{s_k}^t\dot{x}^T(s)W_2\dot{x}(s){\mathrm{d}}s. \end{aligned}$$

For \(r(t)\!=\!p\), \(t\!\in \!\Omega _{l,k}\), \(\tau (t,p)\) satisfies \(\tau _m\!+\!(p\!-\!1)\sigma \!\le \!\tau (t,p)\!\le \!\tau _m\!+\!p\sigma\) and \(\sum _{q=1}^N\lambda _{pq}=0\). Then we have

$$\sum _{q=1}^N\lambda _{pq}\tau (t,q)=\sigma \sum _{q=1}^Nq\lambda _{pq}.$$
(27)

For any appropriately dimensioned matrices \(M_1\) and \(M_2\), the following equality is true:

$$2\sum _{i=1}^r\sum _{j=1}^r\mu _i\mu _j^{k}(x^T(t)M_1^T\!+\!\dot{x}^T(t)M_2^T)[A_ix(t)\!+\!B_iK_jx(t\!-\!\tau (t,p))\!-\!B_iK_je_k(t\!-\!\tau (t,p))\!-\!\dot{x}(t)]\!=\!0.$$
(28)

One can use Lemmas 1 and 2 to obtain that

$$\begin{aligned}&\!-\!\int _{t-\tau _M}^{t-\tau _m}\dot{x}^T(s)R_1\dot{x}(s){\mathrm{d}}s \!\le \! -\frac{1}{\delta }\xi ^T(t)\left[ \begin{array}{l} (e_2\!-\!e_3) \\ (e_3\!-\!e_5) \\ \end{array} \right] ^T \left[ \begin{array}{ll} R_1 &{} S \\ *&{} R_1 \\ \end{array} \right] \left[ \begin{array}{l} (e_2\!-\!e_3) \\ (e_3\!-\!e_5)\\ \end{array} \right] \xi (t),\\&\!-\!\int _{t-\tau _m}^t\dot{x}^T(s)R_2\dot{x}(s){\mathrm{d}}s\!\le \! \xi ^T(t)[(e_2\!-\!e_1)^TE_1\!+\!E^T_1(e_2\!-\!e_1) \!+\!\tau _mE_1^TR_2^{-1}E_1]\xi (t),\\&\!-\!\int _{s_k}^{t}\dot{x}^T(s)W_2\dot{x}(s){\mathrm{d}}s\le \xi ^T(t)[(e_6\!-\!e_1)^TE_2+E_2^T(e_6\!-\!e_1)+(\tau (t,p)\!-\!\tau _m)E_2^TW_2^{-1}E_2]\xi (t), \end{aligned}$$

where \(\xi (t)\!=\![x^T(t)\ \ x^T(t\!-\!\tau _m)\ \ x^T(t\!-\!\tau (t,p))\ \ e_k^T(t\!-\!\tau (t,p))\ \ x^T(t\!-\!\tau _M)\ \ x^T(s_k)\ \ \dot{x}^T(t)]^T\). Then for \(t\!\in \!\Omega _{l,k}\), we have

$${\mathcal {L}}V\le \sum _{i=1}^r\sum _{j=1}^r\mu _i\mu _j^k\xi ^T(t)\Pi _{ij}^0(t)\xi (t),$$
(29)

where \(\Pi _{ij}^0(t)\!=\!\Pi _{ij}^1(t)\!+\!\Pi _{ij}^2(t)\!+\!\Pi _{ij}^0\!+\!\tau _mE_1^TR_2^{-1}E_1\), \(\Pi _{ij}^1(t)\!=\!(\tau _M\!-\!\tau (t,p))\Pi\), \(\Pi _{ij}^2(t)\!=\!(\tau (t,p)\!-\!\tau _m)\sigma \sum _{q=1}^Nq\lambda _{pq}E_2^TW_2^{-1}E_2\). It can be seen from the inequality (12) that

$$\xi ^T(t)\left[ -\epsilon e_3^T\Phi e_3+\epsilon e_4^T\Phi e_3+\epsilon e_3^T\Phi e_4+ (1-\epsilon )e_4^T\Phi e_4\right] \xi (t)\le 0.$$
(30)

By using the S-Procedure technique, one can see that for all non-zero \(\xi (t)\) satisfying (30), the inequality \(\sum _{i=1}^r\sum _{j=1}^r\mu _i\mu _j^k\xi ^T(t)\Pi _{ij}^0(t)\xi (t)\!<\!0\) is equivalent to the existence of a scalar \(\tilde{\delta }>0\) such that

$$\xi ^T(t)\sum _{i=1}^r\sum _{j=1}^r\mu _i\mu _j^k\left\{ \Pi _{ij}^0(t)-\tilde{\delta }\left[ -\epsilon e_3^T\Phi e_3+\epsilon e_4^T\Phi e_3+\epsilon e_3^T\Phi e_4+ (1-\epsilon )e_4^T\Phi e_4\right] \right\} \xi (t)<0.$$
(31)

If (31) holds, then the system (11) with \(\omega (t)\!=\!0\) is stochastically stable.

Notice that \(\Pi _{ij}^0(t)\) is a convex combination of \(\Pi _{ij}^1(t)\) and \(\Pi _{ij}^2(t)\) on \(\tau (t,p)\), using the convex combination technique and Schur complement, the inequality (31) holds if the following inequalities are satisfied:

$$\sum _{i=1}^r\sum _{j=1}^r\mu _i\mu _j^k\Psi _{ij}^1=\left[ \begin{array}{ll} \sum _{i=1}^r\sum _{j=1}^r\mu _i\mu _j^k(\bar{\Pi }_{ij}^0+\delta \Pi ) &{}\quad \tau _mE_1^T\\ *&{}\quad -\tau _m R_2 \\ \end{array} \right] <0,$$
(32)
$$\begin{aligned}&\sum _{i=1}^r\sum _{j=1}^r\mu _i\mu _j^k\Psi _{ij}^2=\left[ \begin{array}{lll} \sum _{i=1}^r\sum _{j=1}^r\mu _i\mu _j^k\bar{\Pi }_{ij}^0 &{}\quad \tau _mE_1^T &{} \delta \sigma \sum _{q=1}^Nq\lambda _{pq}E_2^T\\ *&{}\quad -\tau _mR_2 &{}\quad 0\\ *&{}\quad *&{}\quad -\delta \sigma \sum _{q=1}^Nq\lambda _{pq}W_2\\ \end{array} \right] <0. \end{aligned}$$
(33)

Using the proposed relaxation method in Remark 3 and Lemma 3, if the LMIs (13)–(17) are satisfied, for \(v\!=\!1,2\), we have \(\sum _{i=1}^r\sum _{j=1}^r\mu _i\mu _j^k\Psi _{ij}^v\!<\!0\). It is easy to see that there exists a scalar \(\alpha \!>\!0\), such that

$${\mathcal {L}}V\le -\alpha \Vert x(t)\Vert ^2\quad t\in \Omega _{l,k}.$$

Applying Dynkin’s formula, we can obtain

$${\mathcal {E}}\left\{ \int _0^t\Vert x(s)\Vert ^2{\mathrm{d}}s|(x(0),r(0),0)\right\} \le \frac{1}{\alpha }{\mathcal {E}}\left\{ V(x(0),r(0),0)\right\} ,$$

which implies that the closed-loop system (11) with \(\omega (t)\!=\!0\) is stochastically stable.

Last, under the zero initial condition, we consider \(L_2\)-gain for the system (11) with \(\omega (t)\!\ne \!0\). Employing the LKF (26), we have

$$\begin{aligned} {\mathcal {L}}V\le \sum _{i=1}^r\sum _{j=1}^r\mu _i\mu _j^k\left[ \! \begin{array}{ll} \xi ^T(t) &{}\quad \omega ^T(t) \\ \end{array}\! \right] \times \left[ \! \begin{array}{ll} \tilde{\Pi }_{ij}^0(t) &{}\quad \Gamma _i \\ *&{}\quad -\gamma ^2I \\ \end{array}\! \right] \left[ \! \begin{array}{l} \xi (t) \\ \omega (t) \\ \end{array}\! \right] \!-\!z^T(t)z(t)\!+\!\gamma ^2\omega ^T(t)\omega (t), \end{aligned}$$
(34)

where \(\tilde{\Pi }_{ij}^0(t)\!=\!\Pi _{ij}^0(t)\!+\!e_1^TC_i^TC_ie_1\).

Using the convex combination technique and Schur complement, we have that

$$\begin{aligned} \sum _{i=1}^r\sum _{j=1}^r\mu _i\mu _j^k\left[ \begin{array}{ll} \tilde{\Pi }_{ij}^0(t)+\epsilon e_3^T\Phi e_3-\epsilon e_4^T\Phi e_3-\epsilon e_3^T\Phi e_4+ (\epsilon -1)e_4^T\Phi e_4 &{}\quad \Gamma _i \\ *&{}\quad -\gamma ^2I \\ \end{array} \right] <0 \end{aligned}$$

holds if the following inequalities are satisfied:

$$\sum _{i=1}^r\sum _{j=1}^r\mu _i\mu _j^k\tilde{\Sigma }_{ij}^1<0,$$
(35)
$$\sum _{i=1}^r\sum _{j=1}^r\mu _i\mu _j^k\tilde{\Sigma }_{ij}^2<0.$$
( 36)

Using the introduced free-weighting \(H_i^v\) and the method mentioned in Remark 3, if the conditions (13)–(17) are satisfied, for \(v=1,2\), we have

$$\begin{aligned} \sum _{i=1}^r\sum _{j=1}^r\mu _i\mu _j^k\tilde{\Sigma }_{ij}^v \le&\sum _{i=1}^r\sum _{j\ne i}^r\mu _i\mu _j\left( \frac{\tilde{\Sigma }_{ij}^v\!\!-\!\!\tilde{\Sigma }_{ii}^v}{2}\right) \!+\!\sum _{i=1}^r\sum _{j\ne i}^r\mu _i^k\mu _j^k\left( \frac{\tilde{\Sigma }_{ij}^v\!\!-\!\!\tilde{\Sigma }_{ii}^v}{2}\right) \!\!+\!\!\sum _{i=1}^r\sum _{j\ne i}^r\mu _i\eta _j\left( \frac{\tilde{\Sigma }_{ij}^v\!\!+\!\!H_i^v}{2}\right) \\&+\sum _{i=1}^r\sum _{j\ne i}^r\eta _i\mu _j^k\left( \frac{\tilde{\Sigma }_{ij}^v\!+\!H_j^v}{2}\right) \!+\! \sum _{i=1}^r\left( \mu _i^k\!\!-\!\!\mu _i\right) ^2\left( -\frac{\tilde{\Sigma }_{ii}^v\!+\!H_i^v}{2}\right) \!+\!\sum _{i=1}^r\left( \mu _i\!\!+\!\mu _i^k\right) \frac{\tilde{\Sigma }_{ii}^v}{2} \\ =&\sum _{i=1}^r\mu _i\left[ \frac{\tilde{\Sigma }_{ii}^v}{2}\!+\!\sum _{k\ne i}^r\eta _k\left( \frac{\tilde{\Sigma }_{ik}^v\!+\!H_i^v}{2}\right) \right] \!+\!\sum _{i=1}^r\sum _{i<j\le r }\mu _i\mu _j\left( \frac{\Pi _{ij}^v\!+\!\Pi _{ji}^v}{2}\right) \\&+\sum _{i=1}^r\sum _{i<j\le r}\mu _i^k\mu _j^k\left( \frac{\Pi _{ij}^v\!+\!\Pi _{ji}^v}{2}\right) \!+\!\sum _{i=1}^r\mu _i^k\left[ \frac{\tilde{\Sigma }_{ii}^v}{2}\!+\!\sum _{k\ne i}^r\eta _k\left( \frac{\tilde{\Sigma }_{ki}^v\!+\!H_i^v}{2}\right) \right] \\&+\sum _{i=1}^r\left( \mu _i^k\!-\!\mu _i\right) ^2\left( -\frac{\tilde{\Sigma }_{ii}^v\!+\!H_i^v}{2}\right) <0, \end{aligned}$$
( 37)

which implies \({\mathcal {L}}V<-z^T(t)z(t)+\gamma ^2\omega ^T(t)\omega (t)\) for the system (11) with the constraint (12).

For \(t\!\in \!\Omega _{l,k}\), it follows from (34) that

$${\mathcal {E}}\left\{ V(x_t,p,t)\right\} -{\mathcal {E}}\left\{ V(x_{s_k^+},p,s_k^+)\right\} \le -{\mathcal {E}}\left\{ \int _{s_k}^tz^T(s)z(s){\mathrm{d}}s\right\} + \gamma ^2\int _{s_k}^tw^T(s)w(s){\mathrm{d}}s,$$

since V(t) is non-increasing and positive definite in \([0,\infty )\), then under the zero initial condition, it is easy to obtain that \({\mathcal {E}}\left\{ \int _0^\infty z^T(s)z(s){\mathrm{d}}s\right\} \!\le \!\gamma ^2\int _0^\infty \omega ^T(s)\omega (s){\mathrm{d}}s\). Therefore, the closed-loop system (11) is stochastically stable with \(\gamma\)-disturbance attenuation. This completes the proof.

Appendix 2: Proof of Theorem 2

Define \(M\!=\!M_1^{-1}\!=\!\beta M_2^{-1}, \ \bar{P}\!=\!M^TPM, \ \bar{S}\!=\!M^TSM,\ \bar{Q}_i\!=\!M^TQ_iM, \ \bar{R}_i\!=\!M^TR_iM, \ \bar{W}_i\!=\!M^TW_iM\ (i\!=\!1,2), \ \bar{E}_i\!=\!M^TE_iM\ (i\!=\!1,2), \Delta \!=\) diag\(\{ M,M,M,M,M,M,M \}\), \(\bar{H}_{i^1}\!\!=\) diag \(\{ \Delta ^T, I,M^T\}\) \(H_i^1\) diag \(\{ \Delta ,I,M \},\) \(\bar{H}_i^2=\) diag \(\{ \Delta ^T,I,M^T,M^T \}\) \(H_i^2\) diag \(\{ \Delta ,I,M,M \}\ (i\!=\!1,2,\ldots ,r)\) , and \(Y_j\!=\!K_jM(j\!=\!1,2,\ldots ,r)\). Then, pre- and postmultiply diag\(\{M,M\}^T\) and its transpose to (13), diag\(\{\Delta ^T,I,M^T\}\) and its transpose to (14)–(17) for \(v\!=\!1\), diag\(\{\Delta ^T, I, M^T,M^T\}\) and its transpose to (14)–(17) for \(v\!=\!2\), respectively. Using the Schur complement, one can readily arrive at (18)–(22) from (13)–(17). This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Zhao, J. & Zhang, D. L 2-Gain Control for T-S Fuzzy Systems Over an Event-Triggered Communication Network Using Delay Decomposition and Deviation Bounds of Membership Functions. Int. J. Fuzzy Syst. 18, 817–828 (2016). https://doi.org/10.1007/s40815-015-0127-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-015-0127-z

Keywords

Navigation