Skip to main content

Advertisement

Log in

SVPWM: Torque Level Controlling of Wind Turbine System Using Fuzzy and ABC-DQ Transformation

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Wind energy conversion systems employ the doubly fed induction generator (DFIG) for maximum energy capture. Many traditional systems used pulse width modulation (PWM) technique to control the DFIG block by a feedback from the load terminal. PWM schemes generate the control pulses for an inverter switches. An independent activation of the wind turbine generator does not offer optimum result. This paper presents the fuzzy-based PWM controlling of wind turbine system in DFIG to provide an optimum result. According to the torque level and the rotation speed of wind turbine, the speed of the generator is controlled to maintain voltage regulation at load side. The integration of ABC-direct quadrature transformation based on the fuzzy rule generates the necessary control signals for gates. To control the operation of multilevel converters, an enhanced phase differential space vector PWM modulation (EPD-SVPWM) is implemented in this paper. The transfer function for maintenance of the reduced level of ripples in inverter switching circuit included in the modification of SVPWM lead to high-speed switching of the insulated gate bipolar transistor (IGBT). Consequently, it results in a low error rate and regulated power at load side. The experimental results exhibit better performance regarding dynamic voltage variation impact, and output voltage level at load side than the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Okedu, K.E.: Hybrid control strategy for variable speed wind turbine power converters. Int. J. Renew. Energy Res. (IJRER) 3, 283–288 (2013)

    Google Scholar 

  2. Babaie Lajimi, A., Asghar Gholamian, S., Shahabi, M.: Modeling and control of a DFIG-based wind turbine during a grid voltage drop. Eng. Technol. Appl. Sci. Res. 1, 121–125 (2011)

    Google Scholar 

  3. Blaabjerg, F., Liserre, M., Ma, K.: Power electronics converters for wind turbine systems. IEEE Trans. Ind. Appl. 48, 708–719 (2012)

    Article  Google Scholar 

  4. Chang-Chien, L.-R., Lin, W.-T., Yin, Y.-C.: Enhancing frequency response control by DFIGs in the high wind penetrated power systems. IEEE Trans. Power Syst. 26, 710–718 (2011)

    Article  Google Scholar 

  5. Badihi, H., Zhang, Y., Hong, H.: Wind turbine fault diagnosis and fault-tolerant torque load control against actuator faults. IEEE Trans. Control Syst. Technol. 23, 1351–1372 (2015)

    Article  Google Scholar 

  6. Yunqian, Z., Weihao, H., Zhe, C., Ming, C., Yanting, H.: Flicker mitigation strategy for a doubly fed induction generator by torque control. IET Renew. Power Gener. 8, 91–99 (2014)

    Article  Google Scholar 

  7. Mohseni, M., Islam, S., Masoum, M.A.: Impacts of symmetrical and asymmetrical voltage sags on DFIG-based wind turbines considering phase-angle jump, voltage recovery, and sag parameters. IEEE Trans. Power Electron. 26, 1587–1598 (2011)

    Article  Google Scholar 

  8. Engelhardt, S., Erlich, I., Feltes, C., Kretschmann, J., Shewarega, F.: Reactive power capability of wind turbines based on doubly fed induction generators. IEEE Trans. Energy Convers. 26, 364–372 (2011)

    Article  Google Scholar 

  9. Yang, L., Xu, Z., Østergaard, J., Dong, Z.Y., Wong, K.P., Ma, X.: Oscillatory stability and eigenvalue sensitivity analysis of a DFIG wind turbine system. IEEE Trans. Energy Convers. 26, 328–339 (2011)

    Article  Google Scholar 

  10. Yang, L., Xu, Z., Østergaard, J., Dong, Z.Y., Wong, K.P.: Advanced control strategy of DFIG wind turbines for power system fault ride through. IEEE Trans. Power Syst. 27, 713–722 (2012)

    Article  Google Scholar 

  11. Liang, J., Howard, D.F., Restrepo, J.A., Harley, R.G.: Feedforward transient compensation control for DFIG wind turbines during both balanced and unbalanced grid disturbances. IEEE Trans. Ind. Appl. 49, 1452–1463 (2013)

    Article  Google Scholar 

  12. Qu, L., Qiao, W.: Constant power control of DFIG wind turbines with supercapacitor energy storage. IEEE Trans. Ind. Appl. 47, 359–367 (2011)

    Article  Google Scholar 

  13. Xu, H., Hu, J., He, Y.: Integrated modeling and enhanced control of DFIG under unbalanced and distorted grid voltage conditions. IEEE Trans. Energy Convers. 27, 725–736 (2012)

    Article  Google Scholar 

  14. Luna, A., Lima, F.K., Santos, D., Rodríguez, P., Watanabe, E.H., Arnaltes, S.: Simplified modeling of a DFIG for transient studies in wind power applications. IEEE Trans. Ind. Electron. 58, 9–20 (2011)

    Article  Google Scholar 

  15. Cheng, M., Zhu, Y.: The state of the art of wind energy conversion systems and technologies: a review. Energy Convers. Manag. 88, 332–347 (2014)

    Article  Google Scholar 

  16. Wang, L., Truong, D.-N.: Stability enhancement of a power system with a PMSG-based and a DFIG-based offshore wind farm using a SVC with an adaptive-network-based fuzzy inference system. IEEE Trans. Ind. Electron. 60, 2799–2807 (2013)

    Article  Google Scholar 

  17. Karaagac, U., Faried, S.O., Mahseredjian, J., Edris, A.-A.: Coordinated control of wind energy conversion systems for mitigating subsynchronous interaction in DFIG-based wind farms. IEEE Trans. Smart Grid 5, 2440–2449 (2014)

    Article  Google Scholar 

  18. Yao, J., Li, H., Chen, Z., Xia, X., Chen, X., Li, Q., et al.: Enhanced control of a DFIG-based wind-power generation system with series grid-side converter under unbalanced grid voltage conditions. IEEE Trans. Power Electron. 28, 3167–3181 (2013)

    Article  Google Scholar 

  19. Mendis, N., Muttaqi, K.M., Perera, S.: Management of low-and high-frequency power components in demand-generation fluctuations of a DFIG-based wind-dominated RAPS system using hybrid energy storage. IEEE Trans. Ind. Appl. 50, 2258–2268 (2014)

    Article  Google Scholar 

  20. Bourdoulis, M.K., Alexandridis, A.T.: Direct Power Control of DFIG Wind Systems Based on Nonlinear Modeling and Analysis. IEEE J. Emerg. Sel. Top. Power Electron. 2, 764–775 (2014)

    Article  Google Scholar 

  21. Phan, V.-T., Lee, H.-H.: Performance enhancement of stand-alone DFIG systems with control of rotor and load side converters using resonant controllers. IEEE Trans. Ind. Appl. 48, 199–210 (2012)

    Article  Google Scholar 

  22. Rezaei, E., Tabesh, A., Ebrahimi, M.: Dynamic model and control of DFIG wind energy systems based on power transfer matrix. IEEE Trans. Power Deliv. 27, 1485–1493 (2012)

    Article  Google Scholar 

  23. Liu, Y., Wu, Q., Zhou, X., Jiang, L.: Perturbation observer based multiloop control for the DFIG-WT in multimachine power system. IEEE Trans. Power Syst. 29, 2905–2915 (2014)

    Article  Google Scholar 

  24. Galvez, J.M., Ordonez, M.: Swinging bus operation of inverters for fuel cell applications with small DC-link capacitance. IEEE Trans. Power Electron. 30, 1064–1075 (2015)

    Article  Google Scholar 

  25. Georgakas, K.G., Vovos, P.N., Vovos, N.: Harmonic reduction method for a single-phase DC–AC converter without an output filter. IEEE Trans. Power Electron. 29, 4624–4632 (2014)

    Article  Google Scholar 

  26. Grbović, P.J., Delarue, P., Le Moigne, P., Bartholomeus, P.: A three-terminal ultracapacitor-based energy storage and PFC device for regenerative controlled electric drives. IEEE Trans. Ind. Electron. 59, 301–316 (2012)

    Article  Google Scholar 

  27. Hoseini, S.K., Adabi, J., Sheikholeslami, A.: Predictive modulation schemes to reduce common-mode voltage in three-phase inverters-fed AC drive systems. Power Electron. IET 7, 840–849 (2014)

    Article  Google Scholar 

  28. Petersson, A., Thiringer, T., Harnefors, L., Petrů, T.: Modeling and experimental verification of grid interaction of a DFIG wind turbine. IEEE Trans. Energy Convers. 20, 878–886 (2005)

    Article  Google Scholar 

  29. Suresh, Y., Panda, A.K.: Research on a cascaded multilevel inverter by employing three-phase transformers. IET Power Electron. 5, 561–570 (2012)

    Article  Google Scholar 

  30. Yu, J.-J.: Adaptive fuzzy stabilization for a class of pure-feedback systems with unknown dead-zones. Int. J. Fuzzy Syst. 15, 289 (2013)

    MathSciNet  Google Scholar 

  31. June-Seok, L., Kyo-Beum, L.: Carrier-based discontinuous PWM method for vienna rectifiers. IEEE Trans. Power Electron. 30, 2896–2900 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bhanu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhanu, P., Pappa, N. SVPWM: Torque Level Controlling of Wind Turbine System Using Fuzzy and ABC-DQ Transformation. Int. J. Fuzzy Syst. 19, 141–154 (2017). https://doi.org/10.1007/s40815-016-0157-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0157-1

Keywords

Navigation