Skip to main content
Log in

BRAIN-F: Beacon Rate Adaption Based on Fuzzy Logic in Vehicular Ad Hoc Network

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Beacon rate adaption is a way to cope with congestion of the wireless link and it consequently decreases the beacon drop rate and the inaccuracy of information of each vehicle in the network. In a vehicular environment, the beacon rate adjustment is strongly dependent on the traffic condition. Due to this, we firstly propose a new model to detect traffic density based on the vehicle’s own status and the surrounding vehicle’s status. We also develop a model based on fuzzy logic namely the BRAIN-F, to adjust the frequency of beaconing. This model depends on three parameters including traffic density, vehicle status and location status. Channel congestion and information accuracy are considered the main criteria to evaluate the performance of BRAIN-F under both LOS and NLOS. Simulation results demonstrate that the BRAIN-F not only reduces the congestion of the wireless link but it also increases the information accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Qureshi, K.N., Abdullah, A.H.: A survey on intelligent transportation systems. Middle East J. Sci. Res. 15(5), 629–642 (2013)

    Google Scholar 

  2. Høst-Madsen, A., Zhang, J.: Capacity bounds and power allocation for wireless relay channels. IEEE Trans. Inf. Theory 51(6), 2020–2040 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouk, S.H., et al.: Hybrid adaptive beaconing in vehicular ad hoc networks: a survey. Int. J. Distrib. Sens. Netw. 501, 390360 (2015)

    Article  Google Scholar 

  4. Goudarzi, S., Hassan, W.H., Soleymani, S.A., Zakaria, O., Jivanadham, L.B.: Artificial bee colony for vertical-handover in heterogeneous wireless networks. In: Advanced Computer and Communication Engineering Technology, pp. 307–322. Springer International Publishing, Berlin (2016)

  5. Goudarzi, S., Hassan, W.H., Anisi, M.H., Soleymani, S.A., Shabanzadeh, P.: A novel model on curve fitting and particle swarm optimization for vertical handover in heterogeneous wireless networks. Math. Probl. Eng. 2015, 1–16 (2015)

    Article  Google Scholar 

  6. Sommer, C., et al.: How shadowing hurts vehicular communications and how dynamic beaconing can help. In: 2013 Proceedings IEEE INFOCOM. IEEE (2013)

  7. Soleymani, S.A., et al.: Trust management in vehicular ad hoc network: a systematic review. EURASIP J. Wirel. Commun. Netw. 2015(1), 146 (2015)

    Article  Google Scholar 

  8. El Mouna Zhioua, G., et al.: A fuzzy multi-metric QoS-balancing gateway selection algorithm in a clustered VANET to LTE advanced hybrid cellular network. IEEE Trans. Veh. Technol. 64(2), 804–817 (2015)

    Article  Google Scholar 

  9. Gupta, P., et al.: A fuzzy optimization framework for COTS products selection of modular software systems. Int. J. Fuzzy Syst. 15, 91–109 (2013)

    Google Scholar 

  10. Sepulcre, M., et al.: Congestion and awareness control in cooperative vehicular systems. Proc. IEEE 99(7), 1260–1279 (2011)

    Article  Google Scholar 

  11. Chaabouni, N., Hafid, A., Sahu, P.K.: A collision-based beacon rate adaptation scheme (CBA) for VANETs. In: 2013 IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS). IEEE (2013)

  12. Torrent-Moreno, M., et al.: Vehicle-to-vehicle communication: fair transmit power control for safety-critical information. IEEE Trans. Veh. Technol. 58(7), 3684–3703 (2009)

    Article  Google Scholar 

  13. Lu, H., Poellabauer, C.: Balancing broadcast reliability and transmission range in VANETs. In: 2010 IEEE Vehicular Networking Conference (VNC). IEEE (2010)

  14. Van Eenennaam, E., Karagiannis, G., Heijenk, G.: Towards scalable beaconing in VANETs. In: Fourth ERCIM workshop on eMobility (2010)

  15. Stanica, R., Chaput, E., Beylot, A.-L.: Broadcast communication in vehicular ad-hoc network safety applications. In: 2011 IEEE Consumer Communications and Networking Conference (CCNC). IEEE (2011)

  16. Baldessari, R., et al.: Joining forces for vanets: a combined transmit power and rate control algorithm. In: 6th International Workshop on Intelligent Transportation (WIT) (2010)

  17. Rawat, D.B., et al.: Enhancing VANET performance by joint adaptation of transmission power and contention window size. IEEE Trans. Parallel Distrib. Syst. 22(9), 1528–1535 (2011)

    Article  Google Scholar 

  18. Ghafoor, K.Z., et al.: Beaconing approaches in vehicular ad hoc networks: a survey. Wirel. Pers. Commun. 73(3), 885–912 (2013)

    Article  MathSciNet  Google Scholar 

  19. Rezaei, S., et al.: Adaptive Communication Scheme for Cooperative Active Safety System, vol. 4. NewsBITS (2008)

  20. Robinson, C.L., et al.: Efficient message composition and coding for cooperative vehicular safety applications. IEEE Trans. Veh. Technol. 56(6), 3244–3255 (2007)

    Article  Google Scholar 

  21. Ghafoor, K.Z., et al.: A fuzzy logic approach to beaconing for vehicular ad hoc networks. Telecommun. Syst. 52(1), 139–149 (2013)

    Article  Google Scholar 

  22. Sasikala, E., Rengarajan, N.: An intelligent technique to detect jamming attack in wireless sensor networks (WSNs). Int. J. Fuzzy Syst. 17(1), 76–83 (2015)

    Article  Google Scholar 

  23. Sommer, C., Tonguz, O., Dressler, F.: Adaptive beaconing for delay-sensitive and congestion-aware traffic information systems. In: 2010 IEEE Vehicular Networking Conference (VNC). IEEE (2010)

  24. Dernoncourt, F.: Introduction to Fuzzy Logic (2011)

  25. Bchini, T., et al.: Fuzzy logic based layers 2 and 3 handovers in IEEE 802.16 e network. Comput. Commun. 33(18), 2224–2245 (2010)

    Article  Google Scholar 

  26. Ozkurt, C., Camci, F.: Automatic traffic density estimation and vehicle classification for traffic surveillance systems using neural networks. Math. Comput. Appl. 14(3), 187 (2009)

    Google Scholar 

  27. https://en.wikipedia.org/wiki/Category:Types_of_roads

  28. Yildiz, C., et al.: Adaptive neuro-fuzzy models for the quasi-static analysis of microstrip line. Microw. Opt. Technol. Lett. 50(5), 1191–1195 (2008)

    Article  Google Scholar 

  29. Guney, K., Sarikaya, N.: Comparison of Mamdani and Sugeno fuzzy inference system models for resonant frequency calculation of rectangular microstrip antennas. Prog. Electromagn. Res. B 12, 81–104 (2009)

    Article  Google Scholar 

  30. Jang, J.-S.R., Sun, C.-T.: Neuro-fuzzy modeling and control. Proc. IEEE 83(3), 378–406 (1995)

    Article  Google Scholar 

  31. Schmidt, R.K., et al.: Exploration of adaptive beaconing for efficient intervehicle safety communication. IEEE Network 24(1), 14–19 (2010)

    Article  Google Scholar 

  32. Junior, F.R.L., Osiro, L., Carpinetti, L.C.R.: A comparison between fuzzy AHP and fuzzy TOPSIS methods to supplier selection. Appl. Soft Comput. 21, 194–209 (2014)

    Article  Google Scholar 

  33. Jiang, D., Chen, Q., Delgrossi, L.: Optimal data rate selection for vehicle safety communications. In: Proceedings of the fifth ACM International Workshop on VehiculAr Inter-NETworking. ACM, New York (2008)

  34. Mittag, J., et al.: Analysis and design of effective and low-overhead transmission power control for VANETs. In: Proceedings of the fifth ACM International Workshop on VehiculAr Inter-NETworking. ACM, New York (2008)

  35. Schmidt-Eisenlohr, F., et al.: Simulation platform for inter-vehicle communications and analysis of periodic information exchange. In: Fourth Annual Conference on Wireless on Demand Network Systems and Services, 2007. WONS’07. IEEE (2007)

  36. Abbas, T., et al.: Directional analysis of vehicle-to-vehicle propagation channels. In: 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring). IEEE (2011)

  37. Cheng, L., et al.: Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz dedicated short range communication (DSRC) frequency band. IEEE J. Sel. Areas Commun. 25(8), 1501–1516 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research. The research is supported by Ministry of Education Malaysia (MOE) and conducted in collaboration with Research Management Center (RMC) at Universiti Teknologi Malaysia (UTM) under VOT NUMBER: R.J130000.7828.4F708. The authors also thank University of Malaya for the financial support (UMRG Grant RP036A-15AET, RP036B-15AET, RP036C-15AET, RG325-15AFR) and facilities to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ahmad Soleymani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleymani, S.A., Abdullah, A.H., Anisi, M.H. et al. BRAIN-F: Beacon Rate Adaption Based on Fuzzy Logic in Vehicular Ad Hoc Network. Int. J. Fuzzy Syst. 19, 301–315 (2017). https://doi.org/10.1007/s40815-016-0171-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0171-3

Keywords

Navigation