Skip to main content
Log in

Fuzzy Logic Controller for Variable Boost Function in Quasi Z Source Indirect Matrix Converter during Voltage Sag Condition

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper presents a fuzzy logic controller to vary the voltage transfer ratio of Quasi Z Source Indirect Matrix Converter (QZSIMC) for application in induction motor drive during unbalanced input voltage and variable drive speed. A fuzzy logic controller achieves the variation of the voltage transfer ratio from 0.866 to 5 by modifying the shoot through duty ratio of the quasi z source network. Modification in the shoot through duty ratio of the rectifier results in the improvement of the voltage boost factor of the quasi network which in turn varies the voltage transfer ratio. The fuzzy controller varies the shoot through duty ratio with input voltage error and set speed error. The proposed fuzzy-based QZSIMC can attain variable boost as well as buck function with variable shoot through duty ratio. Thus, this proposed method overcomes the limitation of constant boost. The proposed fuzzy-based QZSIMC widens the operating range of the induction motor during all the input voltage sag conditions and reduces the stress on the switches. The simulation results validate the quality performance of the proposed induction motor drive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bose, B.K.: Modern Power Electronics and AC Drives. Prentice-Hall, Englewood Cliffs (2002)

    Google Scholar 

  2. Krause, P.C., Wasynczuk, O., Sudhoff, S.D., Pekarek, S.D.: Analysis of Electrical Machinery and Drive Systems. Wiley, Hoboken (2013)

    Book  Google Scholar 

  3. Friedli, T., Kolar, J.W., Rodriguez, J., Wheeler, P.W.: Comparative evaluation of three-phase AC–AC matrix converter and voltage DC-link back-to-back converter systems. IEEE Trans. Ind. Electron. 59(12), 4487–4510 (2012)

    Article  Google Scholar 

  4. Gyugi, L., Pelly, B.: Static Power Frequency Changers, Theory, Performance and Application. Wiley, New York (1970)

    Google Scholar 

  5. Alesina, A., Venturini, M.G.B.: Analysis and design of optimum-amplitude nine-switch direct AC–AC converters. IEEE Trans. Power Electron. 4(1), 101–112 (1989)

    Article  Google Scholar 

  6. Wheeler, P.W., Rodriguez, J., Clare, J.C., Empringham, L., Weinstein, A.: Matrix converters: a technology review. IEEE Trans. Ind. Electron. 49(2), 276–288 (2002)

    Article  Google Scholar 

  7. Empringham, L., Kolar, J.W., Rodriguez, J., Wheeler, P.W., Clare, J.C.: Technological issues and industrial application of matrix converters: a review. IEEE Trans. Ind. Electron. 60(10), 4260–4271 (2013)

    Article  Google Scholar 

  8. Sri Vidhya, D., Venkatesan, T.: A review on performance analysis of matrix converter fed Ac motor drive. Int. J. Power Electron. Drive Syst. 7(1), 85–93 (2016)

    Google Scholar 

  9. Tamai, Y., Ohguchi, H., Sato, I., Odaka, A., Mine, H., Itoh, J.I.: A novel control strategy for matrix converters in over-modulation range. In: Power Conversion Conference, Nagoya, pp. 1049–1055, Apr 2007

  10. Szcześniak, P.: Three-phase AC–AC Power Converters Based on Matrix Converter Topology, Matrix-Reactance Frequency Converters Concept. Springer, London (2013)

    Book  Google Scholar 

  11. Park, K., Jou, S.-T., Lee, K.-B.: Z-source matrix converter with unity voltage transfer ratio. In: Industrial Electronics, IECON ‘09 35th Annual Conference of IEEE, pp. 4523–4528, Nov 3–5, 2009

  12. Song, W., Zhong, Y.: A study of Z-source matrix converter with high voltage transfer ratio. In: Vehicle Power and Propulsion Conference, VPPC IEEE, pp. 1–6, Sept 3–5, 2008

  13. Anderson, J., Peng, F.Z.: A class of quasi-Z-source inverters. In: Conference of Rec. IEEE IAS Annual Meeting, Edmonton, AB, Canada, pp. 1–7, Oct 5–9, 2008

  14. Liu, X., Loh, P.C., Wang, P., Han, X.: Improved modulation schemes for indirect Z-source matrix converter with sinusoidal input and output waveforms. IEEE Trans. Power Electron. 27(9), 4039–4050 (2012)

    Article  Google Scholar 

  15. Liu, X., Loh, P.C., Peng, F.Z., Wang, P.: Optimal modulation of indirect Z-source matrix converter. In: Power Electronics International Conference (IPEC), pp. 3049–3056, June 21–24, 2010

  16. Ge, B., Lei, Q., Qian, W., Peng, F.Z.: A family of Z-source matrix converters. IEEE Trans. Ind. Electron. 59(1), 35–46 (2012)

    Article  Google Scholar 

  17. Liu, S., Ge, B., Abu-Rub, H., Peng, F.Z., Liu, Y.: Quasi-Z-source matrix converter based induction motor drives. In: IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, pp. 5303–5307, 2012

  18. Liu, S., Ge, B., Abu-Rub, H., Jiang, X., Peng, F.Z.: A novel indirect quasi-Z-source matrix converter applied to induction motor drives. In: Energy Conversion Congress and Exposition (ECCE), 2013 IEEE, pp. 2440–2444, Sept 15–19, 2013

  19. Liu, S., Ge, B., Abu-Rub, H., Jiang, X., Peng, F.Z.: Modeling, analysis, and motor drive application of quasi-Z-source indirect matrix converter. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 33(12), 298–319 (2014)

    Google Scholar 

  20. Liu, S., Ge, B., Jiang, X., Abu-Rub, H., Peng, F.Z.: Comparative evaluation of three Z-source/quasi-Z-source indirect matrix converters. IEEE Trans. Ind. Electron. 62(2), 692–701 (2015)

    Article  Google Scholar 

  21. Lei, Q., Peng, F.Z., Ge, B.: Pulse-width-amplitude-modulated voltage-fed quasi-Z-source direct matrix converter with maximum constant boost. In: Applied Power Electronics Conference and Exposition (APEC), Twenty-Seventh Annual IEEE, pp. 641–646, Feb 5–9, 2012

  22. Nguyen, M.K., Jung, Y.G., Lim, Y.C.: Single-phase Z-source buck-boost matrix converter. In: Applied Power Electronics Conference and Exposition, Twenty-Fourth Annual IEEE, pp. 846–850, Feb 15–19, 2009

  23. Ellabban, O., Abu-Rub, H., Ge, B.: A quasi-Z-source direct matrix converter feeding a vector controlled induction motor drive. Emerg. Select. Top. IEEE J. Power Electron. 3(2), 339–348 (2015)

    Article  Google Scholar 

  24. Park, K., Lee, K.B., Blaabjerg, F.: Improving output performance of a Z-source sparse matrix converter under unbalanced input-voltage conditions. IEEE Trans. Power Electron. 27(4), 2043–2054 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sri Vidhya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sri Vidhya, D., Venkatesan, T. & Kanagaraj, N. Fuzzy Logic Controller for Variable Boost Function in Quasi Z Source Indirect Matrix Converter during Voltage Sag Condition. Int. J. Fuzzy Syst. 19, 1093–1103 (2017). https://doi.org/10.1007/s40815-016-0221-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0221-x

Keywords

Navigation