Skip to main content
Log in

Optimization of Welded Beam Structure Using Neutrosophic Optimization Technique: A Comparative Study

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper investigates neutrosophic optimization (NSO) approach to optimize the cost of welding of a welded steel beam, while the maximum shear stress in the weld group, maximum bending stress in the beam, maximum deflection at the tip and buckling load of the beam have been considered as flexible constraints. The problem of designing an optimal welded beam consists of dimensioning a welded steel beam such as height, length, depth, width of welded beam, so as to minimize its cost, subject to the constraints as stated above. The purpose of the present study firstly is to investigate the effect of truth, indeterminacy and falsity membership function in NSO in perspective of welded beam design in imprecise environment and secondly is to analyze the results obtained by different optimization methods like fuzzy, intuitionistic fuzzy and several deterministic methods so that the welding cost of the welded steel beam become most cost-effective. Specifically based on truth, indeterminacy and falsity membership function, a single-objective NSO algorithm has been developed to optimize the welding cost, subjected to a set of flexible constraints. It has been shown that NSO is an efficient method in finding out the optimum value in comparison with other iterative methods for nonlinear welded beam design in precise and imprecise environment. Numerical example is also given to demonstrate the efficiency of the proposed NSO approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zadeh, L.A.: Fuzzy set. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  2. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    Article  MATH  Google Scholar 

  3. Angelov, P.P.: Optimization in intuitionistic fuzzy environment. Fuzzy Sets Syst. 86, 299–306 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Smarandache, F.:Neutrosophic logic and set,mss. http://fs.gallup.unm.edu/neutrosophy.htm (1995). Accessed 8 Mar 2017

  5. Wang, H., Smarandache, F., Zhang, Y.Q., Raman, R.: Single valued neutrosophic sets. Multispace Multistruct. 4, 410–413 (2010)

    MATH  Google Scholar 

  6. Wei, Y., Qiu, J., Karimi, H.R., Wang, M.: H∞ ← model reduction for continuous-time Markovian jump systems with incomplete statistics of mode information. Int. J. Syst. Sci. 45, 1496–1507 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wei, Y., Qiu, J., Karimi, H.R., Wang, M.: New results on H1 dynamic output feedback control for Markovian jump systems with time-varying delay and defective mode information. Optim. Control Appl. Methods 35, 656–675 (2014)

    Article  MATH  Google Scholar 

  8. Wei, Y., Qiu, J., Karimi, H.R., Wang, M.: Filtering design for two-dimensional Markovian jump systems with state-delays and deficient mode information’’. Inf. Sci. 269, 316–331 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zimmermann, H.J.: Fuzzy linear programming with several objective function. Fuzzy Sets Syst. 1, 45–55 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ragsdell, K.M., Phillips, D.T.: Optimal design of a class of welded structures using geometric programming. ASME J. Eng. Ind. 98, 1021–1025 (1976)

    Article  Google Scholar 

  11. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 194, 3902–3933 (2005)

    Article  MATH  Google Scholar 

  12. Deb, K., Pratap, A., Moitra, S.: Mechanical component design for multiple objectives using elitist non-dominated sorting GA. In: Proceedings of the Parallel Problem Solving from Nature VI Conference, Paris, Vol 16–20, pp. 859–868 (2000). -->

  13. Coello, C.A.C.: Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 41, 113–127 (2000). doi:10.1016/S0166-3615(99)00046-9

    Article  Google Scholar 

  14. Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188, 1567–1579 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Coello Coello, C.A.: Solving engineering optimization problems with the simple constrained particle swarm optimizer. Informatica 32, 319–326 (2008)

    Google Scholar 

  16. Coello, C.A.C., Montes, E.M.: Useful infeasible solutions in engineering optimization with evolutionary algorithms. In: Mexican International Conference on Artificial Intelligence. (2005). DOI: 10.1007/11579427_66

  17. Aguirre, A.H., Zavala, A.M., Diharce, E.V., Rionda, S.B.: COPSO: Constrained Optimization via PSO Algorithm. Centre for Research in Mathematics (CIMAT). Technical report No.I-07-04/22-02-2007, (2007)

  18. Coello Coello, C.A., Montes, M.: Contraint-handling techniques in genetic algorithms through dominance based tournament selection. Adv. Eng. Inform. 16, 193–203 (2002)

    Article  Google Scholar 

  19. Coello Coello, C.A., Becerra, R.L.: Efficient evolutionary optimization through the use of a cultural algorithm. Eng. Optim. 36, 219–236 (2004)

    Article  Google Scholar 

  20. He, Q., Wang, L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 20, 89–99 (2007)

    Article  Google Scholar 

  21. He, Q., Wang, L.: Ahybrid particle swarm optimization with a feasibility based rule for constrained optimization. Appl. Math. Comput. 186, 1407–1422 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Zahara, E., Kao, Y.T.: Hybrid Nelder-mead simplex search and particle swarm optimization for constrained engineering design problems. Expert Syst. Appl. 36, 3880–3886 (2009)

    Article  Google Scholar 

  23. David, D.C.N., Stephen, S.E.A., Ajoy, J.A.: Cost minimization of welded beam design problem using PSO, SA, PS, GOLDLIKE, CUCKOO, FF, FP, ALO, GSA and MVO. Int. J. Appl. Math. 5, 1–14 (2016)

    Google Scholar 

  24. Wei, Y., Qiu, J., Karimi, H.R.: Reliable output feedback control of discrete-time fuzzy affine systems with actuator faults. pp. 1–12 (2016). Doi: 10.1109/TCSI.2016.2605685

  25. Wei, Y., Qiu, J., Lam, H.K., Wu, L.: Approaches to T-S Fuzzy-affine-model-based reliable output feedback control for nonlinear itˆo stochastic systems. IEE Trans. Fuzzy Syst. (2016). doi:10.1109/TFUZZ.2016.2566810

    Google Scholar 

  26. Das, P., Roy, T.K.: Multi-objective non-linear programming problem based on neutrosophic optimization technique and its application in Riser Design Problem. Neutrosophic Sets Syst. 9, 88–95 (2015)

    Google Scholar 

  27. Singh, B., Sarkar, M., Roy, T.K.: Intuitionistic fuzzy optimization of truss design: a comperative study. Int. J. Comput. Organ. Trends (IJCOT) 3, 25–33 (2016)

    Article  Google Scholar 

  28. Sarkar, M., Roy, T.K.: Intuitionistic fuzzy optimization on structural design:a comparative study. Int. J. Innov. Res. Sci. Eng. Technol. 5, 18471–18482 (2016)

    Google Scholar 

  29. Sarkar, M., Roy, T.K.: Truss design optimization with imprecise load and stress in intuitionistic fuzzy environment. J. Ultra Sci. Phys. Sci. 29, 12–23 (2017)

    Google Scholar 

  30. Sarkar, M., Dey, S., Roy, T.K.: Truss Design optimization using neutrosophic optimization technique. Neutrosphic Sets Syst. 13, 62–69 (2016)

    Google Scholar 

  31. Sarkar, M., Roy, T.K.: Truss design optimization using neutrosophic optimization technique: a comparative study. Adv. Fuzzy Math. 12, 411–438 (2017)

    Google Scholar 

  32. Sarkar, M., Dey, S., Roy, T.K.: Neutrosophic optimization technique and its application on structural design. J. Ultra Sci. Phys. Sci. 28, 309–321 (2016)

    Google Scholar 

  33. Sarkar, M., Dey, S., Roy, T.K.: Multi-objective neutrosophic optimization technique and its application to structural design. Int. J. Comput. Appl. 148, 31–37 (2016)

    Google Scholar 

  34. Sarkar, M., Roy, T.K.: Multi-objective welded beam optimization using neutrosophic goal programming technique. Adv. Fuzzy Math. 12, 515–538 (2017)

    Google Scholar 

  35. Sarkar, M., Roy, T.K.: Truss design optimization with imprecise load and stress in neutrosophic environment. Adv. Fuzzy Math. 12, 439–474 (2017)

    Google Scholar 

  36. Sarkar, M., Roy, T.K.: Optimization of welded beam with imprecise load and stress by parameterized intuitionistic fuzzy optimization technique. Adv. Fuzzy Math. 12, 577–608 (2017)

    Google Scholar 

  37. Sarkar, M., Roy, T.K.: Multi-objective welded beam design optimization using T-norm and T-conorm based intuitionistic Fuzzy optimization technique. Adv. Fuzzy Math. 12, 549–575 (2017)

    Google Scholar 

  38. Werner, B.: Interactive fuzzy programming systems. Fuzzy Sets Syst. 23, 133–178 (1987)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The research work of Mridula Sarkar is financed by Rajiv Gandhi National Fellowship [F1-17.1/2013-14-SC-wes-42549/(SA-III/Website)], Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mridula Sarkar.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, M., Roy, T.K. Optimization of Welded Beam Structure Using Neutrosophic Optimization Technique: A Comparative Study. Int. J. Fuzzy Syst. 20, 847–860 (2018). https://doi.org/10.1007/s40815-017-0362-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0362-6

Keywords

Navigation