Skip to main content
Log in

Nussbaum-Based Adaptive Fuzzy Tracking Control of Unmanned Surface Vehicles with Fully Unknown Dynamics and Complex Input Nonlinearities

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, subject to both fully unknown dynamics and complex input nonlinearities including unknown control directions and dead zones, a Nussbaum-based adaptive fuzzy trajectory tracking control scheme of an unmanned surface vehicle is addressed by combining adaptive fuzzy backstepping technique with Nussbaum approach. The dead-zone input nonlinearity is firstly divided into input-dependent functions and time-varying input coefficients which can be treated as system uncertainties. Together with disturbances, unknown dynamics and uncertainties, the lumped nonlinearity is online approximated by employing an adaptive fuzzy approximator. Within the backstepping framework, a Nussbaum gain function is further designed to tackle unknown control directions, and thereby devising an adaptive fuzzy trajectory tracking control scheme which is constructed recursively to deal with complex input nonlinearities and fully unknown dynamics. Theoretical analysis reveals that all signals of the closed-loop tracking system are bounded and tracking errors can converge to an arbitrarily small neighborhood of zero. Simulation studies demonstrate the effectiveness and superiority of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fossen, T.I.: Marine Control Systems: Guidance. Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics, Trondheim (2002)

    Google Scholar 

  2. Wang, N., Er, M.J., Han, M.: Dynamic tanker steering control using generalized-ellipsoidal-basis-function-based fuzzy neural networks. IEEE Trans. Fuzzy Syst. 23(5), 1414–1427 (2015)

    Article  Google Scholar 

  3. Wang, N., Er, M.J., Han, M.: Large tanker motion model identification using generalized ellipsoidal basis function-based fuzzy neural networks. IEEE Trans. Cybernet. 45(12), 2732–2743 (2015)

    Article  Google Scholar 

  4. He, W., Ge, S.S.: Cooperative control of a nonuniform gantry crane with constrained tension. Automatica 66(4), 146–154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Xiang, X.B., Yu, C.Y., Niu, Z.M., Zhang, Q.: Subsea cable tracking by autonomous underwater vehicle with magnetic sensing guidance. Sensors 16(8), 1335 (2016)

    Article  Google Scholar 

  6. Wang, N., Qian, C., Sun, Z.Y.: Global asymptotic output tracking of nonlinear second-order systems with power integrators. Automatica 80(1), 156–161 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, N., Sun, J.C., Er, M.J.: Tracking-error-based universal adaptive fuzzy control for output tracking of nonlinear systems with completely unknown dynamics. IEEE Trans. Fuzzy Syst. (2017). doi:10.1109/TFUZZ.2017.2697399

    Google Scholar 

  8. Xiang, X.B., Lapierre, L., Jouvencel, B.: Smooth transition of AUV motion control: from fully-actuated to under-actuated configuration. Robot. Auton. Syst. 67(5), 14–22 (2015)

    Article  Google Scholar 

  9. Xiang, X.B., Yu, C.Y., Zhang, Q., Xu, G.H.: Path-following control of an AUV: Fully actuated versus under-actuated configuration. Mar. Technol. Soc. J. 50(1), 34–47 (2016)

    Article  Google Scholar 

  10. Zhang, Q., Lapierre, L., Xiang, X.B.: Distributed control of coordinated path tracking for networked nonholonomic mobile vehicles. IEEE Trans. Ind. Inform. 9(1), 472–484 (2013)

    Article  Google Scholar 

  11. Khalil, H.: Nonlinear Systems, 2nd edn. Prentice-Hall Press, Upper Saddle River (1996)

    Google Scholar 

  12. Li, Z., Sun, J., Oh, S.: Design, analysis and experimental validation of a robust nonlinear path following controller for marine surface vessels. Automatica 45(7), 1649–1658 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, M., Ge, S.S., Voon Ee How, B.: Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Trans. Neural Netw. 21(5), 796–812 (2010)

    Article  Google Scholar 

  14. Xiang, X.B., Yu, C.Y., Zhang, Q.: Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties. Comput. Oper. Res. 84, 165–177 (2017)

    Article  MathSciNet  Google Scholar 

  15. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  16. Zhang, R., Chen, Y., Sun, F., Xu, H.: Path control of a surface ship in restricted water using sliding mode. IEEE Trans. Control Syst. Technol. 8(4), 722–732 (2000)

    Article  Google Scholar 

  17. Boldbaatar, E.A., Lin, C.M.: Self-learning fuzzy sliding-mode control for a water bath temperature control system. Int. J. Fuzzy Syst. 17(1), 31–38 (2015)

    Article  Google Scholar 

  18. Yu, R., Zhu, Q., Xia, G., Liu, Z.: Sliding mode tracking control of an underactuated surface vessel. IET Control Theory Appl. 6(3), 461–466 (2012)

    Article  MathSciNet  Google Scholar 

  19. Wang, N., Sun, J.C., Er, M.J., Liu, Y.C.: A novel extreme learning control framework of unmanned surface vehicles. IEEE Trans. Cybernet. 46(5), 1106–1117 (2016)

    Article  Google Scholar 

  20. He, W., Chen, Y.H., Yin, Z.: Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybernet. 46(3), 620–629 (2016)

    Article  Google Scholar 

  21. He, W., Dong, Y.T., Sun, C.Y.: Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst. Man Cybernet. Syst. 46(3), 334–344 (2016)

    Article  Google Scholar 

  22. He, W., Dong, Y.T.: Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans. Neural Netw. Learn. Syst. (2017). doi:10.1109/TNNLS.2017.2665581

    Google Scholar 

  23. Chu, Z.Z., Zhu, D.Q., Yang, S.X.: Observer-based adaptive neural network trajectory tracking control for remotely operated vehicle. IEEE Trans. Neural Netw. Learn. Syst. (2017). doi:10.1109/TNNLS.2016.2544786

    MathSciNet  Google Scholar 

  24. Wang, N., Er, M.J., Sun, J.C., Liu, Y.C.: Adaptive robust online constructive fuzzy control of a complex surface vehicle system. IEEE Trans. Cybernet. 46(7), 1511–1523 (2016)

    Article  Google Scholar 

  25. Zhao, Z., He, W., Ge, S.S.: Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints. IEEE Trans. Control Syst. Technol. 22, 1536–1543 (2014)

    Article  Google Scholar 

  26. Wang, N., Qian, C., Sun, J.C., Liu, Y.C.: Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles. IEEE Trans. Control Syst. Technol. 24(4), 1454–1462 (2016)

    Article  Google Scholar 

  27. Leonessa, A., VanZwieten, T., Morel, Y.: Neural network model reference adaptive control of marine vehicles. In: Menini, L., Zaccarian, L., Abdallah, C. (eds.) Current Trends in Nonlinear Systems and Control, pp. 421–440. Springer, Birkhäuser Boston (2006)

    Chapter  Google Scholar 

  28. Wang, N., Er, M.J.: Self-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbances. IEEE Trans. Control Syst. Technol. 23(3), 991–1002 (2015)

    Article  Google Scholar 

  29. Wang, N., Er, M.J.: Direct adaptive fuzzy tracking control of marine vehicle with fully unknown parametric dynamics and uncertainties. IEEE Trans. Control Syst. Technol. 24(5), 1845–1852 (2016)

    Article  Google Scholar 

  30. Chwa, D.: Global tracking control of underactuated ships with input and velocity constraints using dynamic surface control method. IEEE Trans. Control Syst. Technol. 19(6), 1357–1370 (2011)

    Article  Google Scholar 

  31. Zheng, Z., Sun, L.: Path following control for marine surface vessel with uncertainties and input saturation. Neurocomputing 177(1), 158–167 (2016)

    Article  Google Scholar 

  32. Harmouche, M., Laghrouche, S., Chitour, Y.: Global tracking for underactuated ships with bounded feedback controllers. Int. J. Control 87(10), 2035–2043 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Huang, J., Wen, C., Wang, W., Song, Y.D.: Global stable tracking control of underactuated ships with input saturation. Syst. Control Lett. 85(1), 1–7 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shojaei, K.: Neural adaptive robust control of underactuated marine surfacevehicles with input saturation. Appl. Ocean Res. 53(4), 267–278 (2015)

    Article  Google Scholar 

  35. Shojaei, K.: Observer-based neural adaptive formation control of autonomous surface vessels with limited torque. Robot. Auton. Syst. 78(1), 83–96 (2016)

    Article  Google Scholar 

  36. He, W., Ouyang, Y.C., Hong, J.: Vibration control of a flexible robotic manipulator in the presence of input deadzone. IEEE Trans. Ind. Inform. 13(1), 48–59 (2017)

    Article  Google Scholar 

  37. Xu, B.: Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity. Nonlinear Dyn. 80(3), 1509–1520 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, N., Lv, S.L., Er, M.J., Chen, W.H.: Fast and accurate trajectory tracking control of an autonomous surface vehicle with unmodeled dynamics and disturbances. IEEE Trans. Intell. Veh. 1(3), 230–243 (2016)

    Article  Google Scholar 

  39. Gao, Y., Tong, S.C., Li, Y.M.: Observer-based adaptive fuzzy output constrained control for MIMO nonlinear systems with unknown control directions. Fuzzy Sets Syst. 290(1), 79–99 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, Y.M., Tong, S.C., Li, T.S.: Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control directions and unknown dead-zones. IEEE Trans. Fuzzy Syst. 23(4), 1228–1241 (2015)

    Article  Google Scholar 

  41. Gao, Y., Tong, S.C.: Composite adaptive fuzzy output feedback dynamic surface control design for stochastic large-scale nonlinear systems with unknown dead zone. Neurocomputing 175, 55–64 (2015)

    Article  Google Scholar 

  42. Boulkroune, A., Tadjine, M., Saad, M., Farza, M.: Fuzzy adaptive controller for MIMO nonlinear systems with known and unknown control direction. Fuzzy Sets Syst. 161(6), 797–820 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shi, W.X.: Adaptive fuzzy control for MIMO nonlinear systems with nonsymmetric control gain matrix and unknown control direction. IEEE Trans. Fuzzy Syst. 22(5), 1288–1230 (2014)

    Article  Google Scholar 

  44. Zhang, T.P., Ge, S.S.: Adaptive neural network tracking control of MIMO nonlinear systems with unknown dead zones and control directions. IEEE Trans. Neural Netw. 20(3), 483–493 (2009)

    Article  Google Scholar 

  45. Tong, S.C., Sui, S., Li, Y.M.: Adaptive fuzzy decentralized output stabilization for stochastic nonlinear large-scale systems with unknown control directions. IEEE Trans. Fuzzy Syst. 22(5), 1365–1372 (2014)

    Article  Google Scholar 

  46. Wang, N., Er, M.J., Han, M.: Generalized single-hidden layer feedforward networks for regression problems. IEEE Trans. Neural Netw. Learn. Syst. 26(6), 1161–1176 (2015)

    Article  MathSciNet  Google Scholar 

  47. Wang, N., Er, M.J., Han, M.: Parsimonious extreme learning machine using recursive orthogonal least squares. IEEE Trans. Neural Netw. Learn. Syst. 25(10), 1828–1841 (2014)

    Article  Google Scholar 

  48. Gao, Y., Tong, S.C.: Composite adaptive fuzzy output feedback dynamic surface control design for uncertain nonlinear stochastic systems with input quantization. Int. J. Fuzzy Syst. 17(4), 609–622 (2015)

    Article  MathSciNet  Google Scholar 

  49. Skjetne, R., Fossen, T.I., Kokotovic, P.V.: Adaptive maneuvering with experiments, for a model ships in a marine control laboratory. Automatica 41(2), 289–298 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor-in-Chief, Associate Editor and anonymous referees for their invaluable comments and suggestions. This work is supported by the National Natural Science Foundation of P. R. China (under Grants 51009017 and 51379002), Applied Basic Research Funds from Ministry of Transport of P. R. China (under Grant 2012-329-225-060), China Postdoctoral Science Foundation (under Grant 2012M520629), the Fund for Dalian Distinguished Young Scholars (under Grant 2016RJ10), the Innovation Support Plan for Dalian High-level Talents (under Grant 2015R065), and the Fundamental Research Funds for the Central Universities (under Grant 3132016314)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Gao, Y., Sun, Z. et al. Nussbaum-Based Adaptive Fuzzy Tracking Control of Unmanned Surface Vehicles with Fully Unknown Dynamics and Complex Input Nonlinearities. Int. J. Fuzzy Syst. 20, 259–268 (2018). https://doi.org/10.1007/s40815-017-0387-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0387-x

Keywords

Navigation