Skip to main content

Advertisement

Log in

Survey on Fuzzy-Logic-Based Guidance and Control of Marine Surface Vehicles and Underwater Vehicles

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Fuzzy logic control, due to its simple control structure, easy and cost-effective design, has been successfully employed to the application of guidance and control in robotic fields. This paper aims to review fuzzy-logic-based guidance and control in an important branch of robots—marine robotic vehicles. First, guidance and motion forms including the maneuvering, path following, trajectory tracking, and position stabilization are described. Subsequently, the application of three major classes of fuzzy logic control, including the conventional fuzzy control (Mamdani fuzzy control and Takagi–Sugeno–Kang fuzzy control), adaptive fuzzy control (self-tuning fuzzy control and direct/indirect adaptive fuzzy control), and hybrid fuzzy control (fuzzy PID control, fuzzy sliding mode control, and neuro-fuzzy control) are presented. In particular, we summarize the design and analysis process of direct/indirect adaptive fuzzy control and fuzzy PID control in marine robotic fields. In addition, two comparative results between hybrid fuzzy control and the corresponding single control are provided to illustrate the superiority of hybrid fuzzy control. Finally, trends of the fuzzy future in marine robotic vehicles are concluded based on its state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahn, J.H., Rhee, K.P., You, Y.J.: A study on the collision avoidance of a ship using neural networks and fuzzy logic. Appl. Ocean Res. 37, 162–173 (2012)

    Article  Google Scholar 

  2. Amjad, M., Ishaque, K., Abdullah, S., Salam, Z.: An alternative approach to design a fuzzy logic controller for an autonomous underwater vehicle. In: Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems (CIS), pp. 195–200 (2010)

  3. Asakawa, K., Kojima, J., Kato, Y., Matsumoto, S., Kato, N., Asai, T., Iso, T.: Design concept and experimental results of the autonomous underwater vehicle aqua explorer 2 for the inspection of underwater cables. Adv. Robot. 16(1), 27–42 (2002)

    Article  Google Scholar 

  4. Bai, R.: Adaptive fuzzy output-feedback method applied to fin control for time-delay ship roll stabilization. Math. Probl. Eng. 2014, 791,932 (2014)

    MathSciNet  Google Scholar 

  5. Bessa, W.M., Dutra, M.S., Kreuzer, E.: Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller. Robot. Auton. Syst. 56(8), 670–677 (2008)

    Article  Google Scholar 

  6. Blomberg, A.E.A., Sæbø, T.O., Hansen, R.E., Pedersen, R.B., Austeng, A.: Automatic detection of marine gas seeps using an interferometric sidescan sonar. IEEE J. Ocean. Eng. 42(3), 590–602 (2017)

    Article  Google Scholar 

  7. Bovio, E., Cecchi, D., Baralli, F.: Autonomous underwater vehicles for scientific and naval operations. Annu. Rev. Control 30(2), 117–130 (2006)

    Article  Google Scholar 

  8. Braginsky, B., Guterman, H.: Obstacle avoidance approaches for autonomous underwater vehicle: simulation and experimental results. IEEE J. Ocean. Eng. 41(4), 882–892 (2016)

    Article  Google Scholar 

  9. Bui, L.D., Kim, Y.G.: An obstacle-avoidance technique for autonomous underwater vehicles based on BK-products of fuzzy relation. Fuzzy Sets Syst. 157(4), 560–577 (2006)

    Article  MathSciNet  Google Scholar 

  10. Caharija, W., Pettersen, K.Y., Bibuli, M., Calado, P., Zereik, E., Braga, J., Gravdahl, J.T., Sørensen, A.J., Milovanović, M., Bruzzone, G.: Integral line-of-sight guidance and control of underactuated marine vehicles: theory, simulations, and experiments. IEEE Trans. Control Syst. Technol. 24(5), 1623–1642 (2016)

    Article  Google Scholar 

  11. Campos, E., Chemori, A., Creuze, V., Torres, J., Lozano, R.: Saturation based nonlinear depth and yaw control of underwater vehicles with stability analysis and real-time experiments. Mechatronics 45, 49–59 (2017)

    Article  Google Scholar 

  12. Capocci, R., Dooly, G., Omerdić, E., Coleman, J., Newe, T., Toal, D.: Inspection-class remotely operated vehicles—a review. J. Mar. Sci. Eng. 5(1), 13 (2017)

    Article  Google Scholar 

  13. Chang, D., Wu, W., Edwards, C.R., Zhang, F.: Motion tomography: mapping flow fields using autonomous underwater vehicles. Int. J. Robot. Res. 36(3), 320–336 (2017)

    Article  Google Scholar 

  14. Chang, W., Liang, H., Ku, C.: Fuzzy controller design subject to actuator saturation for dynamic ship positioning systems with multiplicative noises. Proc. Inst. Mech. Eng. I J. Syst. Control Eng. 224(6), 725–736 (2010)

    Google Scholar 

  15. Chang, W.J., Chang, W., Liu, H.H.: Model-based fuzzy modeling and control for autonomous underwater vehicles in the horizontal plane. J. Mar. Sci. Technol. 11(3), 155–163 (2003)

    Google Scholar 

  16. Chang, W.J., Chen, M.W., Ku, C.C.: Passive fuzzy controller design for discrete ship steering systems via takagi-sugeno fuzzy model with multiplicative noises. J. Mar. Sci. Technol. 21(2), 159–165 (2013)

    Google Scholar 

  17. Chen, S., Hsu, W.: Fuzzy sliding mode control for ship roll stabilization. Asian J. Control 5(2), 187–194 (2003)

    Article  Google Scholar 

  18. Chen, Y.Y., Tian, Y.P.: Formation tracking and attitude synchronization control of underactuated ships along closed orbits. Int. J. Robust Nonlinear Control 25(16), 3023–3044 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, Y.Y., Wang, Z.Z., Zhang, Y., Liu, C.L., Wang, Q.: A geometric extension design for spherical formation tracking control of second-order agents in unknown spatiotemporal flowfields. Nonlinear Dyn. 88(2), 1173–1186 (2017)

    Article  MATH  Google Scholar 

  20. Chen, Y.Y., Zhang, Y., Liu, C.L., Wei, P.: Coordinated orbit-tracking control of second-order non-linear agents with directed communication topologies. Int. J. Syst. Sci. 47(16), 3929–3939 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, Y.Y., Zhang, Y., Wang, Z.Z.: An adaptive backstepping design for formation tracking motion in an unknown eulerian specification flowfield. J. Frankl. Inst. 354(14), 6217–6233 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Choi, B.J., Kwak, S.W., Kim, B.K.: Design and stability analysis of single-input fuzzy logic controller. IEEE Trans. Syst. Man Cybern. B (Cybernetics) 30(2), 303–309 (2000)

    Article  Google Scholar 

  23. Chu, Z., Xiang, X., Zhu, D., Luo, C., Xie, D.: Adaptive fuzzy sliding mode diving control for autonomous underwater vehicle with input constraint. Int. J. Fuzzy Syst. (2017). doi:10.1007/s40815-017-0390-2

    Google Scholar 

  24. Chu, Z., Zhu, D., Yang, S.X.: Observer-based adaptive neural network trajectory tracking control for remotely operated vehicle. IEEE Trans. Neural Netw. Learn. Syst. 28(7), 1633–1645 (2017)

    Article  MathSciNet  Google Scholar 

  25. Chu, Z., Zhu, D., Jan, G.E.: Observer-based adaptive neural network control for a class of remotely operated vehicles. Ocean Eng. 127, 82–89 (2016)

    Article  Google Scholar 

  26. Cui, R., Chen, L., Yang, C., Chen, M.: Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities. IEEE Trans. Industr. Electron. 64(8), 6785–6795 (2017)

    Article  Google Scholar 

  27. Cui, R., Yang, C., Li, Y., Sharma, S.: Adaptive neural network control of auvs with control input nonlinearities using reinforcement learning. IEEE Trans. Syst. Man Cybern. Syst. 47(6), 1019–1029 (2017)

    Article  Google Scholar 

  28. Cui, R., Zhang, X., Cui, D.: Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities. Ocean Eng. 123, 45–54 (2016)

    Article  Google Scholar 

  29. Djapic, V., Nad, D.: Collaborative autonomous vehicle use in mine countermeasures. Sea Technol. 51(10), 19–23 (2010)

    Google Scholar 

  30. Do, K.D.: Global path-following control of underactuated ships under deterministic and stochastic sea loads. Robotica 34(11), 2566–2591 (2016)

    Article  Google Scholar 

  31. Do, K.D., Pan, J.: Control of Ships and Underwater Vehicles: Design for Underactuated and Nonlinear Marine Systems. Springer, Berlin (2009)

    Book  Google Scholar 

  32. Dong, X., Yu, B., Shi, Z., Zhong, Y.: Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans. Control Syst. Technol. 23(1), 340–348 (2015)

    Article  Google Scholar 

  33. Dong, X., Zhou, Y., Ren, Z., Zhong, Y.: Time-varying formation control for unmanned aerial vehicles with switching interaction topologies. Control Eng. Pract. 46, 26–36 (2016)

    Article  Google Scholar 

  34. Ejaz, M., Chen, M.: Sliding mode control design of a ship steering autopilot with input saturation. Int. J. Adv. Rob. Syst. 14(3), 1–13 (2017)

    Google Scholar 

  35. Fang, M.C., Wang, S.M., Mu-Chen, W., Lin, Y.H.: Applying the self-tuning fuzzy control with the image detection technique on the obstacle-avoidance for autonomous underwater vehicles. Ocean Eng. 93, 11–24 (2015)

    Article  Google Scholar 

  36. Faruq, A., Abdullah, S.S.B., Shah, M.F.N.: Optimization of an intelligent controller for an unmanned underwater vehicle. TELKOMNIKA (Telecommunication Computing Electronics and Control) 9(2), 245–256 (2011)

    Article  Google Scholar 

  37. Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)

    Article  Google Scholar 

  38. Fossen, T.I.: Guidance and Control of Ocean Vehicles. Wiley, Hoboken (1994)

    Google Scholar 

  39. Fossen, T.I., Lekkas, A.M.: Direct and indirect adaptive integral line-of-sight path-following controllers for marine craft exposed to ocean currents. Int. J. Adapt. Control Signal Process. 31(4), 445–463 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Fossen, T.I., Pettersen, K.Y.: On uniform semiglobal exponential stability (usges) of proportional line-of-sight guidance laws. Automatica 50(11), 2912–2917 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Fossen, T.I., Pettersen, K.Y., Galeazzi, R.: Line-of-sight path following for dubins paths with adaptive sideslip compensation of drift forces. IEEE Trans. Control Syst. Technol. 23(2), 820–827 (2015)

    Article  Google Scholar 

  42. Fraga, R., Sheng, L.: Double fuzzy logic control for the ship path following. In: Proceedings of the 2nd International Conference on Intelligent Control and Information Processing (ICICIP), pp. 92–96 (2011)

  43. Gao, J., An, X., Proctor, A., Bradley, C.: Sliding mode adaptive neural network control for hybrid visual servoing of underwater vehicles. Ocean Eng. 142, 666–675 (2017)

    Article  Google Scholar 

  44. Gao, J., Proctor, A.A., Shi, Y., Bradley, C.: Hierarchical model predictive image-based visual servoing of underwater vehicles with adaptive neural network dynamic control. IEEE Trans. Cybern. 46(10), 2323–2334 (2016)

    Article  Google Scholar 

  45. Gao, J., Wu, P., Li, T., Proctor, A.: Optimization-based model reference adaptive control for dynamic positioning of a fully actuated underwater vehicle. Nonlinear Dyn. 87(4), 2611–2623 (2017)

    Article  MATH  Google Scholar 

  46. Ghommam, J., Chemori, A.: Adaptive RBFNN finite-time control of normal forms for underactuated mechanical systems. Nonlinear Dyn. 90(1), 301–315 (2017)

    Article  MathSciNet  Google Scholar 

  47. Ghommam, J., Saad, M.: Backstepping-based cooperative and adaptive tracking control design for a group of underactuated auvs in horizontal plan. Int. J. Control 87(5), 1076–1093 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Guo, J., Chiu, F.C., Huang, C.C.: Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle. Ocean Eng. 30(16), 2137–2155 (2003)

    Article  Google Scholar 

  49. Hassanein, O., Anavatti, S.G., Ray, T.: Fuzzy modeling and control for autonomous underwater vehicle. In: Proceedings of the 5th International Conference on Automation, Robotics and Applications (ICARA), pp. 169–174 (2011)

  50. He, W., Chen, Y., Yin, Z.: Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern. 46(3), 620–629 (2016)

    Article  Google Scholar 

  51. He, W., Dong, Y.: Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans. Neural Netw. Learn. Syst. (2017). doi:10.1109/TNNLS.2017.2665581

    Google Scholar 

  52. He, W., Yan, Z., Sun, C., Chen, Y.: Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer. IEEE Trans. Cybern. 47(10), 3452–3465 (2017)

    Article  Google Scholar 

  53. Ho, W.H., Chen, S.H., Chou, J.H.: Optimal control of Takagi–Sugeno fuzzy-model-based systems representing dynamic ship positioning systems. Appl. Soft Comput. 13(7), 3197–3210 (2013)

    Article  Google Scholar 

  54. Hu, J., Li, T., Guo, C.: Design of ga-based fuzzy control for ship steering. In: Proceedings of the Sixth World Congress on Intelligent Control and Automation (WCICA), pp. 3594–3598 (2006)

  55. Huang, H., Zhang, G., Qing, H., Zhou, Z.: Autonomous underwater vehicle precise motion control for target following with model uncertainty. Int. J. Adv. Rob. Syst. 14(4), 1–11 (2017)

    Google Scholar 

  56. Ishaque, K., Abdullah, S., Ayob, S., Salam, Z.: A simplified approach to design fuzzy logic controller for an underwater vehicle. Ocean Eng. 38(1), 271–284 (2011)

    Article  Google Scholar 

  57. Ishaque, K., Abdullah, S.S., Ayob, S.M., Salam, Z.: Single input fuzzy logic controller for unmanned underwater vehicle. J. Intell. Robot. Syst. 59(1), 87–100 (2010)

    Article  MATH  Google Scholar 

  58. Issac, M.T., Adams, S., Bose, N., Williams, C.D., Bachmayer, R., Crees, T.: Analysis of horizontal zigzag manoeuvring trials from the MUN explorer AUV. In: Proceedings of Oceans 2008, pp. 1–7 (2008)

    Google Scholar 

  59. Javadi-Moghaddam, J., Bagheri, A.: An adaptive neuro-fuzzy sliding mode based genetic algorithm control system for under water remotely operated vehicle. Expert Syst. Appl. 37(1), 647–660 (2010)

    Article  Google Scholar 

  60. Javed, S., Ishaque, K., Ali, Z., Saleem, Y.: A simplified yet effective fuzzy logic controller for chemical ship tanker. J. Intell. Fuzzy Syst. 30(1), 29–41 (2016)

    Article  Google Scholar 

  61. Ju, Z., Liu, H.: A unified fuzzy framework for human-hand motion recognition. IEEE Trans. Fuzzy Syst. 19(5), 901–913 (2011)

    Article  Google Scholar 

  62. Ju, Z., Liu, H.: Fuzzy gaussian mixture models. Pattern Recogn. 45(3), 1146–1158 (2012)

    Article  MATH  Google Scholar 

  63. Ju, Z., Ouyang, G., Wilamowska-Korsak, M., Liu, H.: Surface EMG based hand manipulation identification via nonlinear feature extraction and classification. IEEE Sens. J. 13(9), 3302–3311 (2013)

    Article  Google Scholar 

  64. Jun, S.W., Kim, D.W., Lee, H.J.: Design of TS fuzzy-model-based controller for depth control of autonomous underwater vehicles with parametric uncertainties. In: Proceedings of the 11th International Conference on Control, Automation and Systems (ICCAS), pp. 1682–1684 (2011)

  65. Jun, S.W., Lee, H.J., et al.: Design of TS fuzzy-model-based diving control of autonomous underwater vehicles: line of sight guidance approach. In: Proceedings of the 12th International Conference on Control, Automation and Systems (ICCAS), pp. 2071–2073 (2012)

  66. Kelasidi, E., Liljebäck, P., Pettersen, K.Y., Gravdahl, J.T.: Integral line-of-sight guidance for path following control of underwater snake robots: theory and experiments. IEEE Trans. Robot. 33(3), 610–628 (2017)

    Article  Google Scholar 

  67. Khaled, N., Chalhoub, N.G.: A self-tuning guidance and control system for marine surface vessels. Nonlinear Dyn. 73(1–2), 897–906 (2013)

    Article  Google Scholar 

  68. Khodayari, M.H., Balochian, S.: Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller. J. Mar. Sci. Technol. 20(3), 559–578 (2015)

    Article  Google Scholar 

  69. Kia, C., Arshad, M.R.: Robotics vision-based heuristic reasoning for underwater target tracking and navigation. Int. J. Adv. Robot. Syst. 2(3), 245–250 (2005)

    Article  Google Scholar 

  70. Kim, T.W., Yuh, J.: Application of on-line neuro-fuzzy controller to AUVs. Inf. Sci. 145(1), 169–182 (2002)

    Article  MATH  Google Scholar 

  71. Lakhekar, G., Waghmare, L.: Robust maneuvering of autonomous underwater vehicle: an adaptive fuzzy PI sliding mode control. Intel. Serv. Robot. 10(3), 195–212 (2017)

    Article  Google Scholar 

  72. Lapierre, L., Jouvencel, B.: Robust nonlinear path-following control of an AUV. IEEE J. Ocean. Eng. 33(2), 89–102 (2008)

    Article  Google Scholar 

  73. Lapierre, L., Soetanto, D.: Nonlinear path-following control of an AUV. Ocean Eng. 34(11–12), 1734–1744 (2007)

    Article  Google Scholar 

  74. Larrazabal, J.M., Peñas, M.S.: Intelligent rudder control of an unmanned surface vessel. Expert Syst. Appl. 55, 106–117 (2016)

    Article  Google Scholar 

  75. Layne, J.R., Passino, K.M.: Fuzzy model reference learning control for cargo ship steering. IEEE Control Syst. 13(6), 23–34 (1993)

    Article  Google Scholar 

  76. Le, M.D., Nguyen, S.H., Nguyen, L.A.: Study on a new and effective fuzzy PID ship autopilot. Artif. Life Robot. 8(2), 197–201 (2004)

    Article  Google Scholar 

  77. Lee, C.G., Wang, J.S., Yuh, J.: Self-adaptive neuro-fuzzy systems for autonomous underwater vehicle control. Adv. Robot. 15(5), 589–608 (2001)

    Article  Google Scholar 

  78. Lermusiaux, P.F., Haley Jr., P.J., Jana, S., Gupta, A., Kulkarni, C.S., Mirabito, C., Ali, W.H., Subramani, D.N., Dutt, A., Lin, J., et al.: Optimal planning and sampling predictions for autonomous and lagrangian platforms and sensors in the Northern Arabian Sea 2. Oceanography 30(2), 172–185 (2017)

    Article  Google Scholar 

  79. Liang, X., Li, Y., Peng, Z., Zhang, J.: Nonlinear dynamics modeling and performance prediction for underactuated AUV with fins. Nonlinear Dyn. 84(1), 237–249 (2016)

    Article  Google Scholar 

  80. Liang, X., Qu, X., Hou, Y., Zhang, J.: Three-dimensional path following control of underactuated autonomous underwater vehicle based on damping backstepping. Int. J. Adv. Robot. Syst. 14(4), 1–9 (2017)

    Article  Google Scholar 

  81. Liang, X., Qu, X., Wan, L., Ma, Q.: Three-dimensional path following of an underactuated auv based on fuzzy backstepping sliding mode control. Int. J. Fuzzy Syst. (2017). doi:10.1007/s40815-017-0386-y

    Google Scholar 

  82. Liang, X., Wan, L., Blake, J.I., Shenoi, R.A., Townsend, N.: Path following of an underactuated auv based on fuzzy backstepping sliding mode control. Int. J. Adv. Robot. Syst. 13(3), 122 (2016)

    Article  Google Scholar 

  83. Liu, L., Wang, D., Peng, Z.: ESO-based line-of-sight guidance law for path following of underactuated marine surface vehicles with exact sideslip compensation. IEEE J. Ocean. Eng. 42(2), 477–487 (2017)

    Article  Google Scholar 

  84. Liu, S., Liu, Y., Wang, N.: Robust adaptive self-organizing neuro-fuzzy tracking control of UUV with system uncertainties and unknown dead-zone nonlinearity. Nonlinear Dyn. 89(2), 1397–1414 (2017)

    Article  Google Scholar 

  85. Liu, Y., Fang, P., Bian, D., Zhang, H., Wang, S.: Fuzzy comprehensive evaluation for the motion performance of autonomous underwater vehicles. Ocean Eng. 88, 568–577 (2014)

    Article  Google Scholar 

  86. Liu, Y.C., Liu, S.Y., Wang, N.: Fully-tuned fuzzy neural network based robust adaptive tracking control of unmanned underwater vehicle with thruster dynamics. Neurocomputing 196, 1–13 (2016)

    Article  Google Scholar 

  87. Liu, Z., Zhang, Y., Yu, X., Yuan, C.: Unmanned surface vehicles: an overview of developments and challenges. Annu. Rev. Control 41, 71–93 (2016)

    Article  Google Scholar 

  88. Loc, M.B., Choi, H.S., Kim, J.Y., Kim, Y.H., Murakami, Ri: Design of fuzzy PD depth controller for an AUV. Int. J. Ocean Syst. Eng. 3(1), 16–21 (2013)

    Article  Google Scholar 

  89. Lolla, T., Haley Jr., P., Lermusiaux, P.: Path planning in multi-scale ocean flows: coordination and dynamic obstacles. Ocean Model. 94, 46–66 (2015)

    Article  Google Scholar 

  90. Londhe, P., Patre, B., Waghmare, L., Santhakumar, M.: Robust proportional derivative (PD)-like fuzzy control designs for diving and steering planes control of an autonomous underwater vehicle. J. Intell. Fuzzy Syst. 32(3), 2509–2522 (2017)

    Article  Google Scholar 

  91. Ma, C., Shi, P., Zhao, X., Zeng, Q.: Consensus of Euler–Lagrange systems networked by sampled-data information with probabilistic time delays. IEEE Trans. Cybern. 45(6), 1126–1133 (2015)

    Article  Google Scholar 

  92. Maalouf, D., Chemori, A., Creuze, V.: L1 adaptive depth and pitch control of an underwater vehicle with real-time experiments. Ocean Eng. 98, 66–77 (2015)

    Article  Google Scholar 

  93. Makavita, C., Nguyen, H., Ranmuthugala, D.: Fuzzy gain scheduling based optimally tuned PID controllers for an unmanned underwater vehicle. Int. J. Concept. Electron. Commun. Eng. 2(1), 7–13 (2014)

    Google Scholar 

  94. Malisoff, M., Zhang, F.: Adaptive control for planar curve tracking under controller uncertainty. Automatica 49(5), 1411–1418 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  95. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)

    Article  MATH  Google Scholar 

  96. Mišković, N., Bibuli, M., Birk, A., Caccia, M., Egi, M., Grammer, K., Marroni, A., Neasham, J., Pascoal, A., Vasilijević, A., et al.: CADDY—cognitive autonomous diving buddy: two years of underwater human–robot interaction. Mar. Technol. Soc. J. 50(4), 54–66 (2016)

    Article  Google Scholar 

  97. Mon, Y.J., Lin, C.M., et al.: Supervisory recurrent fuzzy neural network guidance law design for autonomous underwater vehicle. Int. J. Fuzzy Syst. 14(1), 54–64 (2012)

    Google Scholar 

  98. Ni, J., Wu, L., Shi, P., Yang, S.X.: A dynamic bioinspired neural network based real-time path planning method for autonomous underwater vehicles. Comput. Intell. Neurosci. 2017, 9269,742 (2017)

    Article  Google Scholar 

  99. Ni, J., Yang, S.X.: Bioinspired neural network for real-time cooperative hunting by multirobots in unknown environments. IEEE Trans. Neural Netw. 22(12), 2062–2077 (2011)

    Article  Google Scholar 

  100. Pascoal, A., Kaminer, I., Oliveira, P.: Navigation system design using time-varying complementary filters. IEEE Trans. Aerosp. Electron. Syst. 36(4), 1099–1114 (2000)

    Article  Google Scholar 

  101. Pascoal, A., Oliveira, P., Silvestre, C., Bjerrum, A., Ishoy, A., Pignon, J.P., Ayela, G., Petzelt, C.: Marius: an autonomous underwater vehicle for coastal oceanography. IEEE Robot. Autom. Mag. 4(4), 46–59 (1997)

    Article  Google Scholar 

  102. Pathan, D.M., Unar, M.A., Memon, Z.A.: Fuzzy logic trajectory tracking controller for a tanker. Mehran Univ. Res. J. Eng. Technol. 31(2), 315–324 (2012)

    Google Scholar 

  103. Peng, Z., Wang, D., Wang, J.: Cooperative dynamic positioning of multiple marine offshore vessels: a modular design. IEEE/ASME Trans. Mechatron. 21(3), 1210–1221 (2016)

    Article  Google Scholar 

  104. Peng, Z., Wang, D., Wang, J.: Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. Learn. Syst. 28(9), 2156–2167 (2017)

    MathSciNet  Google Scholar 

  105. Peng, Z., Wang, D., Wang, W., Liu, L.: Containment control of networked autonomous underwater vehicles: a predictor-based neural DSC design. ISA Trans. 59, 160–171 (2015)

    Article  Google Scholar 

  106. Peng, Z., Wang, J.: Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks. IEEE Trans. Syst. Man Cybern. Syst. (2017). doi:10.1109/TSMC.2017.2697447

    Google Scholar 

  107. Peng, Z., Wang, J., Wang, D.: Containment maneuvering of marine surface vehicles with multiple parameterized paths via spatial–temporal decoupling. IEEE/ASME Trans. Mechatron. 22(2), 1026–1036 (2017)

    Article  Google Scholar 

  108. Peng, Z., Wang, J., Wang, D.: Distributed containment maneuvering of multiple marine vessels via neurodynamics-based output feedback. IEEE Trans. Ind. Electron. 64(5), 3831–3839 (2017)

    Article  Google Scholar 

  109. Peng, Z., Wang, J., Wang, D.: Distributed maneuvering of autonomous surface vehicles based on neurodynamic optimization and fuzzy approximation. IEEE Trans. Control Syst. Technol. (2017). doi:10.1109/TCST.2017.2699167

    Google Scholar 

  110. Qi, D., Feng, J., Yang, J.: Longitudinal motion control of auv based on fuzzy sliding mode method. J. Control Sci. Eng. 2016, 7428,361 (2016)

    Article  MathSciNet  Google Scholar 

  111. Qiao, L., Zhang, W.: Adaptive non-singular integral terminal sliding mode tracking control for autonomous underwater vehicles. IET Control Theory Appl. 11(8), 1293–1306 (2017)

    Article  MathSciNet  Google Scholar 

  112. Raeisy, B., Safavi, A.A., Khayatian, A.R.: Optimized fuzzy control design of an autonomous underwater vehicle. Iran. J. Fuzzy Syst. 9(2), 25–41 (2012)

    MathSciNet  Google Scholar 

  113. Raimondi, F.M., Melluso, M.: Hierarchical fuzzy/lyapunov control for horizontal plane trajectory tracking of underactuated AUV. In: Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE), pp. 1875–1882 (2010)

  114. Ren, J., Zhang, X.: Fuzzy-approximator-based adaptive controller design for ship course-keeping steering in strict-feedback forms. Res. J. Appl. Sci. Eng. Technol. 6(3), 2907–2913 (2013)

    Google Scholar 

  115. Rigatos, G., Siano, P.: Flatness-based adaptive fuzzy control of autonomous submarines. Intell. Ind. Syst. 1(3), 187–200 (2015)

    Article  Google Scholar 

  116. Rigatos, G., Tzafestas, S.: Adaptive fuzzy control for the ship steering problem. Mechatronics 16(8), 479–489 (2006)

    Article  Google Scholar 

  117. Salim, M., Noordin, A., Jahari, A.: A robust of fuzzy logic and proportional derivative control system for monitoring underwater vehicles. In: Proceedings of the Second International Conference on Computer Research and Development, pp. 849–853 (2010)

  118. Salman, S., Anavatti, S.A., Asokan, T.: Adaptive fuzzy control of unmanned underwater vehicles. Indian J. Geo Mar. Sci. 40(2), 168–175 (2011)

    Google Scholar 

  119. Sebastián, E., Sotelo, M.A.: Adaptive fuzzy sliding mode controller for the kinematic variables of an underwater vehicle. J. Intell. Robot. Syst. 49(2), 189–215 (2007)

    Article  Google Scholar 

  120. Shojaei, K.: Neural adaptive robust control of underactuated marine surfacevehicles with input saturation. Appl. Ocean Res. 53(4), 267–278 (2015)

    Article  Google Scholar 

  121. Shojaei, K.: Observer-based neural adaptive formation control of autonomous surface vessels with limited torque. Robot. Auton. Syst. 78, 83–96 (2016)

    Article  Google Scholar 

  122. Shojaei, K., Dolatshahi, M.: Line-of-sight target tracking control of underactuated autonomous underwater vehicles. Ocean Eng. 133, 244–252 (2017)

    Article  Google Scholar 

  123. Smith, S.M., Rae, G.J.S., Anderson, D.T.: Applications of fuzzy logic to the control of an autonomous underwater vehicle. In: Proceedings of the Second IEEE International Conference on Fuzzy Systems, pp. 1099–1106 (1993)

  124. Son, M.J., Kim, Tw: Torpedo evasion simulation of underwater vehicle using fuzzy-logic-based tactical decision making in script tactics manager. Expert Syst. Appl. 39(9), 7995–8012 (2012)

    Article  Google Scholar 

  125. Su, H., Li, Z., Chen, M.Z.: Distributed estimation and control for two-target tracking mobile sensor networks. J. Frankl. Inst. 354(7), 2994–3007 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  126. Su, H., Qiu, Y., Wang, L.: Semi-global output consensus of discrete-time multi-agent systems with input saturation and external disturbances. ISA Trans. 67, 131–139 (2017)

    Article  Google Scholar 

  127. Sun, B., Zhu, D., Jiang, L., Yang, S.X.: A novel fuzzy control algorithm for three-dimensional AUV path planning based on sonar model. J. Intell. Fuzzy Syst. 26(6), 2913–2926 (2014)

    MATH  Google Scholar 

  128. Sun, B., Zhu, D., Yang, S.X.: A bioinspired filtered backstepping tracking control of 7000-m manned submarine vehicle. IEEE Trans. Ind. Electron. 61(7), 3682–3693 (2014)

    Article  Google Scholar 

  129. Sun, B., Zhu, D., Yang, S.X.: A novel tracking controller for autonomous underwater vehicles with thruster fault accommodation. J. Navig. 69(3), 593–612 (2016)

    Article  Google Scholar 

  130. Sutton, R., Craven, P.J.: A fuzzy autopilot design approach that utilizes non-linear consequent terms. J. Mar. Sci. Technol. 9(2), 65–74 (2001)

    Google Scholar 

  131. Sutton, R., Roberts, G., Taylor, S.: Tuning fuzzy ship autopilots using artificial neural networks. Trans. Inst. Meas. Control 19(2), 94–106 (1997)

    Article  Google Scholar 

  132. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  133. Tang, Z., He, Q., Wang, S., Shen, J., Luo, J.: Predictive fuzzy PID control method for underwater vehicles. J. Comput. Inform. Syst. 8(9), 3635–3642 (2012)

    Google Scholar 

  134. Tee, K.P., Ge, S.S.: Control of fully actuated ocean surface vessels using a class of feedforward approximators. IEEE Trans. Control Syst. Technol. 14(4), 750–756 (2006)

    Article  Google Scholar 

  135. Teo, K., An, E., Beaujean, P.P.J.: A robust fuzzy autonomous underwater vehicle (AUV) docking approach for unknown current disturbances. IEEE J. Ocean. Eng. 37(2), 143–155 (2012)

    Article  Google Scholar 

  136. Teo, K., Goh, B., Chai, O.K.: Fuzzy docking guidance using augmented navigation system on an AUV. IEEE J. Ocean. Eng. 40(2), 349–361 (2015)

    Article  Google Scholar 

  137. Thekkedan, M.D., Chin, C.S., Woo, W.L.: Virtual reality simulation of fuzzy-logic control during underwater dynamic positioning. J. Mar. Sci. Appl. 14(1), 14–24 (2015)

    Article  Google Scholar 

  138. Utkin, V.I.: Sliding mode control design principles and applications to electric drives. IEEE Trans. Ind. Electron. 40(1), 23–36 (1993)

    Article  Google Scholar 

  139. Velagic, J., Vukic, Z., Omerdic, E.: Adaptive fuzzy ship autopilot for track-keeping. Control Eng. Pract. 11(4), 433–443 (2003)

    Article  Google Scholar 

  140. Wang, H., Guo, D., Liang, X., Chen, W., Hu, G., Leang, K.K.: Adaptive vision-based leader-follower formation control of mobile robots. IEEE Trans. Ind. Electron. 64(4), 2893–2902 (2017)

    Article  Google Scholar 

  141. Wang, H., Wang, D., Peng, Z.: Adaptive dynamic surface control for cooperative path following of marine surface vehicles with input saturation. Nonlinear Dyn. 77(1–2), 107–117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  142. Wang, H., Wang, D., Peng, Z.: Adaptive neural control for cooperative path following of marine surface vehicles: state and output feedback. Int. J. Syst. Sci. 47(2), 343–359 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  143. Wang, H., Yang, B., Liu, Y., Chen, W., Liang, X., Pfeifer, R.: Visual servoing of soft robot manipulator in constrained environments with an adaptive controller. IEEE/ASME Trans. Mechatron. 22(1), 41–50 (2017)

    Article  Google Scholar 

  144. Wang, J.S., Lee, C.S.G.: Self-adaptive recurrent neuro-fuzzy control of an autonomous underwater vehicle. IEEE Trans. Robot. Autom. 19(2), 283–295 (2003)

    Article  Google Scholar 

  145. Wang, L.X.: Stable adaptive fuzzy control of nonlinear systems. IEEE Trans. Fuzzy Syst. 1(2), 146–155 (1993)

    Article  MathSciNet  Google Scholar 

  146. Wang, L.X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)

    Article  Google Scholar 

  147. Wang, M., Yu, Y., Lin, W.: A novel adaptive fuzzy autopilot design for ASV tracking control. In: Proceedings of the International Conference on Artificial Intelligence and Industrial Engineering, pp. 569–572 (2015)

  148. Wang, N., Er, M.J.: Direct adaptive fuzzy tracking control of marine vehicles with fully unknown parametric dynamics and uncertainties. IEEE Trans. Control Syst. Technol. 24(5), 1845–1852 (2016)

    Article  Google Scholar 

  149. Wang, N., Er, M.J., Sun, J.C., Liu, Y.C.: Adaptive robust online constructive fuzzy control of a complex surface vehicle system. IEEE Trans. Cybern. 46(7), 1511–1523 (2016)

    Article  Google Scholar 

  150. Wang, N., Gao, Y., Sun, Z., Zheng, Z.: Nussbaum-based adaptive fuzzy tracking control of unmanned surface vehicles with fully unknown dynamics and complex input nonlinearities. Int. J. Fuzzy Syst. (2017). doi:10.1007/s40815-017-0387-x

    Google Scholar 

  151. Wang, N., Lv, S., Er, M.J., Chen, W.H.: Fast and accurate trajectory tracking control of an autonomous surface vehicle with unmodeled dynamics and disturbances. IEEE Trans. Intell. Veh. 1(3), 230–243 (2016)

    Article  Google Scholar 

  152. Wang, N., Lv, S., Zhang, W., Liu, Z., Er, M.J.: Finite-time observer based accurate tracking control of a marine vehicle with complex unknowns. Ocean Eng. 145, 406–415 (2017)

    Article  Google Scholar 

  153. Wang, N., Qian, C., Sun, J.C., Liu, Y.C.: Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles. IEEE Trans. Control Syst. Technol. 24(4), 1454–1462 (2016)

    Article  Google Scholar 

  154. Wang, N., Su, S.F., Yin, J., Zheng, Z., Er, M.J.: Global asymptotic model-free trajectory-independent tracking control of an uncertain marine vehicle: An adaptive universe-based fuzzy control approach. IEEE Trans. Fuzzy Syst. (2017). doi:10.1109/TFUZZ.2017.2737405

    Google Scholar 

  155. Wang, N., Sun, J.C., Er, M.J.: Tracking-error-based universal adaptive fuzzy control for output tracking of nonlinear systems with completely unknown dynamics. IEEE Trans. Fuzzy Syst. (2017). doi:10.1109/TFUZZ.2017.2697399

    Google Scholar 

  156. Wang, N., Sun, J.C., Han, M., Zheng, Z., Er, M.J.: Adaptive approximation-based regulation control for a class of uncertain nonlinear systems without feedback linearizability. IEEE Trans. Neural Netw. Learn. Syst. (2017). doi:10.1109/TNNLS.2017.2738918

    Google Scholar 

  157. Wang, N., Sun, Z., Zheng, Z., Zhao, H.: Finite-time sideslip observer-based adaptive fuzzy path-following control of underactuated marine vehicles with time-varying large sideslip. Int. J. Fuzzy Syst. (2017). doi:10.1007/s40815-017-0392-0

    Google Scholar 

  158. Wang, S., Zhang, H., Hou, W., Liang, J.: Control and navigation of the variable buoyancy AUV for underwater landing and takeoff. Int. J. Control 80(7), 1018–1026 (2007)

    Article  MATH  Google Scholar 

  159. Wang, W., Xie, G.: Online high-precision probabilistic localization of robotic fish using visual and inertial cues. IEEE Trans. Ind. Electron. 62(2), 1113–1124 (2015)

    Article  Google Scholar 

  160. Wang, Y., Shen, Y., Wang, K., Sha, Q., He, B., Yan, T.: Fuzzy controller used smoothing function for depth control of autonomous underwater vehicle. In: Proceedings of the OCEANS’16 MTS/IEEE Shanghai, pp. 1–5 (2016)

  161. Wang, Y., Zhang, M., Chu, Z., Liu, X.: Fault-tolerant control based on adaptive sliding mode for underwater vehicle with thruster fault. In: proceedings of the 2014 11th World Congress on Intelligent Control and Automation (WCICA), pp. 5323–5328 (2014)

  162. Wang, Y., Zhang, M., Su, H.: Modular design method and module interface development for small reconfigurable underwater vehicle. In: Proceedings of the 2011 International Conference on Mechatronics and Automation (ICMA), pp. 1479–1484 (2011)

  163. Wang, Y., Zhang, M., Wilson, P.A., Liu, X.: Adaptive neural network-based backstepping fault tolerant control for underwater vehicles with thruster fault. Ocean Eng. 110, 15–24 (2015)

    Article  Google Scholar 

  164. Wynn, R.B., Huvenne, V.A., Le Bas, T.P., Murton, B.J., Connelly, D.P., Bett, B.J., Ruhl, H.A., Morris, K.J., Peakall, J., Parsons, D.R., et al.: Autonomous underwater vehicles (AUVs): their past, present and future contributions to the advancement of marine geoscience. Mar. Geol. 352, 451–468 (2014)

    Article  Google Scholar 

  165. Xia, G., Pang, C., Xue, J.: Fuzzy neural network-based robust adaptive control for dynamic positioning of underwater vehicles with input dead-zone. J. Intell. Fuzzy Syst. 29(6), 2585–2595 (2015)

    Article  MATH  Google Scholar 

  166. Xiang, X., Jouvencel, B., Parodi, O.: Coordinated formation control of multiple autonomous underwater vehicles for pipeline inspection. Int. J. Adv. Robot. Syst. 7(1), 75–84 (2010)

    Article  Google Scholar 

  167. Xiang, X., Lapierre, L., Jouvencel, B.: Smooth transition of AUV motion control: from fully-actuated to under-actuated configuration. Robot. Auton. Syst. 67, 14–22 (2015)

    Article  Google Scholar 

  168. Xiang, X., Liu, C., Lapierre, L., Jouvencel, B.: Synchronized path following control of multiple homogenous underactuated AUVs. J. Syst. Sci. Complex. 25(1), 71–89 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  169. Xiang, X., Liu, C., Su, H., Zhang, Q.: On decentralized adaptive full-order sliding mode control of multiple UAVs. ISA Trans. (2017). doi:10.1016/j.isatra.2017.09.008

    Google Scholar 

  170. Xiang, X., Niu, Z., Lapierre, L., Zuo, M.: Hybrid underwater robotic vehicles: the state-of-the-art and future trends. HKIE Trans. 22(2), 103–116 (2015)

    Article  Google Scholar 

  171. Xiang, X., Yu, C., Niu, Z., Zhang, Q.: Subsea cable tracking by autonomous underwater vehicle with magnetic sensing guidance. Sensors 16(8), 1335 (2016)

    Article  Google Scholar 

  172. Xiang, X., Yu, C., Zhang, Q.: On intelligent risk analysis and critical decision of underwater robotic vehicle. Ocean Eng. 140, 453–465 (2017)

    Article  Google Scholar 

  173. Xiang, X., Yu, C., Zhang, Q.: Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties. Comput. Oper. Res. 84, 165–177 (2017)

    Article  MathSciNet  Google Scholar 

  174. Xiang, X., Yu, C., Zhang, Q., Xu, G.: Path-following control of an AUV: fully actuated versus under-actuated configuration. Mar. Technol. Soc. J. 50(1), 34–47 (2016)

    Article  Google Scholar 

  175. Xiang, X., Yu, C., Zheng, J., Xu, G.: Motion forecast of intelligent underwater sampling apparatus-part i: design and algorithm. Indian J. Geo Mar. Sci. 44(12), 1962–1970 (2015)

    Google Scholar 

  176. Xu, B., Pandian, S.R., Sakagami, N., Petry, F.: Neuro-fuzzy control of underwater vehicle-manipulator systems. J. Frankl. Inst. 349(3), 1125–1138 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  177. Xu, B., Yang, C., Pan, Y.: Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 2563–2575 (2015)

    Article  MathSciNet  Google Scholar 

  178. Xu, B., Zhang, Q., Pan, Y.: Neural network based dynamic surface control of hypersonic flight dynamics using small-gain theorem. Neurocomputing 173, 690–699 (2016)

    Article  Google Scholar 

  179. Yang, Y., Zhou, C., Jia, X.: Robust adaptive fuzzy control and its application to ship roll stabilization. Inf. Sci. 142(1), 177–194 (2002)

    Article  MATH  Google Scholar 

  180. Yang, Y., Zhou, C., Ren, J.: Model reference adaptive robust fuzzy control for ship steering autopilot with uncertain nonlinear systems. Appl. Soft Comput. 3(4), 305–316 (2003)

    Article  Google Scholar 

  181. Yu, C., Xiang, X.: Robust variable-depth path following of an under-actuated autonomous underwater vehicle with uncertainties. Indian J. Geo Mar. Sci. (2018)

  182. Yu, C., Xiang, X., Dai, J.: 3D path following for under-actuated AUV via nonlinear fuzzy controller. In: Proceedings of the OCEANS’16 MTS/IEEE Shanghai, pp. 1–7 (2016)

  183. Yu, C., Xiang, X., Lapierre, L., Zhang, Q.: Nonlinear guidance and fuzzy control for three-dimensional path following of an underactuated autonomous underwater vehicle. Ocean Eng. 146, 457–467 (2017)

    Article  Google Scholar 

  184. Yu, C., Xiang, X., Lapierre, L., Zhang, Q.: Robust magnetic tracking of subsea cable by AUV in the presence of sensor noise and ocean currents. IEEE J. Ocean. Eng. (2018)

  185. Yu, C., Xiang, X., Zhang, Q., Xu, G.: Adaptive fuzzy trajectory tracking control of an under-actuated autonomous underwater vehicle subject to actuator saturation. Int. J. Fuzzy Syst. (2017). doi:10.1007/s40815-017-0396-9

    Google Scholar 

  186. Yu, J., Liu, J., Wu, Z., Fang, H.: Depth control of a bioinspired robotic dolphin based on sliding mode fuzzy control method. IEEE Trans. Ind. Electron. (2017). doi:10.1109/TIE.2017.2745451

    Google Scholar 

  187. Yu, J., Su, Z., Wu, Z., Tan, M.: Development of a fast-swimming dolphin robot capable of leaping. IEEE/ASME Trans. Mechatron. 21(5), 2307–2316 (2016)

    Article  Google Scholar 

  188. Yu, J., Su, Z., Wu, Z., Tan, M.: An integrative control method for bio-inspired dolphin leaping: design and experiments. IEEE Trans. Ind. Electron. 63(5), 3108–3116 (2016)

    Article  Google Scholar 

  189. Yuan, L., Wu, H.S.: Terminal sliding mode fuzzy control based on multiple sliding surfaces for nonlinear ship autopilot systems. J. Mar. Sci. Appl. 9(4), 425–430 (2010)

    Article  Google Scholar 

  190. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  191. Zeng, Z., Lammas, A., Sammut, K., He, F., Tang, Y.: Shell space decomposition based path planning for AUVs operating in a variable environment. Ocean Eng. 91, 181–195 (2014)

    Article  Google Scholar 

  192. Zeng, Z., Lian, L., Sammut, K., He, F., Tang, Y., Lammas, A.: A survey on path planning for persistent autonomy of autonomous underwater vehicles. Ocean Eng. 110, 303–313 (2015)

    Article  Google Scholar 

  193. Zeng, Z., Sammut, K., Lian, L., He, F., Lammas, A., Tang, Y.: A comparison of optimization techniques for AUV path planning in environments with ocean currents. Robot. Auton. Syst. 82, 61–72 (2016)

    Article  Google Scholar 

  194. Zhang, F., Fratantoni, D.M., Paley, D.A., Lund, J.M., Leonard, N.E.: Control of coordinated patterns for ocean sampling. Int. J. Control 80(7), 1186–1199 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  195. Zhang, F., Marani, G., Smith, R.N., Choi, H.T.: Future trends in marine robotics. IEEE Robot. Autom. Mag. 22(1), 14–122 (2015)

    Article  Google Scholar 

  196. Zhang, G., Cai, Y., Zhang, W.: Robust neural control for dynamic positioning ships with the optimum-seeking guidance. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1500–1509 (2017)

    Article  MathSciNet  Google Scholar 

  197. Zhang, L., Jouvencel, B., Fang, Z., Xiang, X.: 3D reconstruction of seabed surface through sonar data of AUVs. Indian J. Geo Mar. Sci. 41(6), 509–515 (2012)

    Google Scholar 

  198. Zhang, L., Pang, Y., Su, Y., Liang, Y.: HPSO-based fuzzy neural network control for AUV. J. Control Theory Appl. 6(3), 322–326 (2008)

    Article  MathSciNet  Google Scholar 

  199. Zhang, Mj, Wu, J., Chu, Zz: Multi-fault diagnosis for autonomous underwater vehicle based on fuzzy weighted support vector domain description. China Ocean Eng. 28(5), 599–616 (2014)

    Article  Google Scholar 

  200. Zhang, Q., Hayashibe, M., Azevedo-Coste, C.: Evoked electromyography-based closed-loop torque control in functional electrical stimulation. IEEE Trans. Biomed. Eng. 60(8), 2299–2307 (2013)

    Article  Google Scholar 

  201. Zhang, Q., Hayashibe, M., Fraisse, P., Guiraud, D.: FES-induced torque prediction with evoked EMG sensing for muscle fatigue tracking. IEEE/ASME Trans. Mechatron. 16(5), 816–826 (2011)

    Article  Google Scholar 

  202. Zhang, Q., Lapierre, L., Xiang, X.: Distributed control of coordinated path tracking for networked nonholonomic mobile vehicles. IEEE Trans. Ind. Inf. 9(1), 472–484 (2013)

    Article  Google Scholar 

  203. Zhang, Q., Liu, R., Chen, W., Xiong, C.: Simultaneous and continuous estimation of shoulder and elbow kinematics from surface EMG signals. Front. Neurosci. 11, 1–12 (2017). doi:10.3389/ins.2017.00280

    Google Scholar 

  204. Zhang, W., Chen, H., Chen, T., Yan, Z., Ren, H.: Research on coordinated robotic motion control based on fuzzy decoupling method in fluidic environments. Math. Probl. Eng. 2014, 1–10 (2014)

    Google Scholar 

  205. Zheng, Z., Feroskhan, M.: Path following of a surface vessel with prescribed performance in the presence of input saturation and external disturbances. IEEE/ASME Trans. Mechatron. (2017). doi:10.1109/TMECH.2017.2756110

    Google Scholar 

  206. Zheng, Z., Huang, Y., Xie, L., Zhu, B.: Adaptive trajectory tracking control of a fully actuated surface vessel with asymmetrically constrained input and output. IEEE Trans. Control Syst. Technol. (2017). doi:10.1109/TCST.2017.2728518

    Google Scholar 

  207. Zheng, Z., Jin, C., Zhu, M., Sun, K.: Trajectory tracking control for a marine surface vessel with asymmetric saturation actuators. Robot. Auton. Syst. 97, 83–91 (2017)

    Article  Google Scholar 

  208. Zheng, Z., Jin, Z., Sun, L., Zhu, M.: Adaptive sliding mode relative motion control for autonomous carrier landing of fixed-wing unmanned aerial vehicles. IEEE Access 5, 5556–5565 (2017)

    Article  Google Scholar 

  209. Zheng, Z., Sun, L.: Path following control for marine surface vessel with uncertainties and input saturation. Neurocomputing 177, 158–167 (2016)

    Article  Google Scholar 

  210. Zheng, Z., Sun, L., Xie, L.: Error-constrained los path following of a surface vessel with actuator saturation and faults. IEEE Trans. Syst. Man Cybern. Syst. (2017). doi:10.1109/TSMC.2017.2717850

    Google Scholar 

  211. Zheng, Z., Yan, K., Yu, S., Zhu, B., Zhu, M.: Path following control for a stratospheric airship with actuator saturation. Trans. Inst. Meas. Control 39(7), 987–999 (2017)

    Article  Google Scholar 

  212. Zhu, D., Cao, X., Sun, B., Luo, C.: Biologically inspired self-organizing map applied to task assignment and path planning of an AUV system. IEEE Trans. Cognit. Dev. Syst. (2017). doi:10.1109/TCDS.2017.2727678

    Google Scholar 

  213. Zhu, D., Hua, X., Sun, B.: A neurodynamics control strategy for real-time tracking control of autonomous underwater vehicles. J. Navig. 67(1), 113–127 (2014)

    Article  Google Scholar 

  214. Zhu, D., Huang, H., Yang, S.X.: Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace. IEEE Trans. Cybern. 43(2), 504–514 (2013)

    Article  Google Scholar 

  215. Zhu, D., Lv, R., Cao, X., Yang, S.X.: Multi-AUV hunting algorithm based on bio-inspired neural network in unknown environments. Int. J. Adv. Robot. Syst. 12(11), 1–12 (2015)

    Article  Google Scholar 

  216. Zhu, D., Zhao, Y., Yan, M.: A bio-inspired neurodynamics-based backstepping path-following control of an AUV with ocean current. Int. J. Robot. Autom. 27(3), 298–307 (2012)

    Google Scholar 

  217. Zuo, M., Xiang, X., Yu, C., Zheng, J.: Motion forecast of intelligent underwater sampling apparatus—part ii: CFD simulation and experimental results. Indian J. Geo Mar. Sci. 44(12), 1971–1979 (2015)

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (under Grant 51579111 and 51209100), the Fundamental Research Funds for the Central Universities (under Grant 2017KFYXJJ005), State Key Laboratory of Ocean Engineering (under Grant 1504), and International Exchanges of the UK Royal Society (under Grant IE161588).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianbo Xiang or Caoyang Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, X., Yu, C., Lapierre, L. et al. Survey on Fuzzy-Logic-Based Guidance and Control of Marine Surface Vehicles and Underwater Vehicles. Int. J. Fuzzy Syst. 20, 572–586 (2018). https://doi.org/10.1007/s40815-017-0401-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0401-3

Keywords

Navigation