Skip to main content
Log in

Adaptive Predictive PID Control Using Fuzzy Wavelet Neural Networks for Nonlinear Discrete-Time Time-Delay Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper presents a novel adaptive predictive proportional–integral–derivative (PID) control using fuzzy wavelet neural networks (FWNN) for a kind of highly nonlinear discrete-time system with time delay. The proposed controller, abbreviated as FWNN-APPID, is composed of an adaptive predictive PID controller with abilities of accurate tracking and disturbance rejection and an FWNN identifier with online parameter tuning and estimation. Several simulations for controlling a highly nonlinear time-delay process show constant disturbances rejection and its performance of setpoint tracking for the proposed FWNN-APPID control method, thus clearly showing its effectiveness and merit. Experimental results on a real PET stretch blow molding machine show the applicability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Garces, F., Becerra, V.M., Kambhampati, C., Warwick, K.: Strategies for Feedback Linearization—A Dynamic Neural Network Approach. Springer, New York (2003)

    Google Scholar 

  2. Spooner, J.T., Maggiore, M., Ordonez, R., Passino, K.M.: Stable Adaptive Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approximation Techniques. Wiley, New York (2002)

    Book  Google Scholar 

  3. Henson, M.A., Seborg, D.E.: Nonlinear Process Control. Prentice Hall, Upper Saddle River, NJ (1997)

    MATH  Google Scholar 

  4. Maciejowski, J.M.: Predictive Control with Constraints. Prentice Hall, Upper Saddle River, NJ (2002)

    MATH  Google Scholar 

  5. Soeterboek, R.: Predictive Control—A Unified Approach. Prentice Hall, Upper Saddle River, NJ (1992)

    MATH  Google Scholar 

  6. Vega, P., Prada, C., Aleixandre, V.: Self-tuning predictive PID controller. IEE Proc. D (Control Theory Appl.) 138(3), 303–311 (1991)

    Article  MATH  Google Scholar 

  7. Yamamoto, T., Omatu, S., Haneda, M.: A design of self-tuning PID controllers. In: Proceedings of 1994 American Control Conference, Baltimore, Mayland, pp. 3263–3267 (1994)

  8. Miller, R.M., Kwok, K.E., Shan, S.L., Wood, R.K.: Development of a stochastic predictive PID controller. In: Proceedings of 1995 American Control Conference, Seattle, Washington, pp. 4204–4208 (1995)

  9. Tsai, C.C., Lu, C.H.: Multivariable self-tuning temperature control for plastic injection molding process. IEEE Trans. Ind. Appl. 34(2), 310–318 (1998)

    Article  Google Scholar 

  10. Yusof, R., Omatu, S.: A multivariable self-tuning PID controllers. Int. J. Control 57(6), 1387–1403 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yusof, R., Omatu, S., Khalid, M.: Self-tuning PID control: a multivariable derivation and application. Automatica 30(12), 1975–1981 (1994)

    Article  MATH  Google Scholar 

  12. Omatu, S., Yusof, R., Sinohara, K., Hotta, M.: Temperature control for heating cylinder by multivariable STC. IEEE Trans. Syst. Control Inf. Eng. 5(3), 102–110 (1992). (in Japanese)

    Google Scholar 

  13. Yin, J.M., Shin, J.S., Lee, H.H.: On-line tuning PID parameters in an idling engine based on a modified BP neural network by particle swarm optimization. Artif. Life Robot. 14(2), 129–133 (2009)

    Article  Google Scholar 

  14. Han, K.Y., Lee, H.H.: Neuro PID control of power generation using a low temperature gap. Artif. Life Robot. 16(2), 178–184 (2011)

    Article  Google Scholar 

  15. Yu, D.L., Chang, T.K., Yu, D.W.: Fault tolerant control of multivariable processes using auto-tuning PID controller. IEEE Trans. Syst. Man Cybern. B Cybern. 35(1), 32–43 (2005)

    Article  MathSciNet  Google Scholar 

  16. Macku, L., Sámek, D.: Two step, PID and model predictive control using artificial neural network applied on semi-batch reactor. WSEAS Trans. Syst. 9(10), 1039–1049 (2010)

    Google Scholar 

  17. Khan, M.A.S.K., Rahman, M.A.: Implementation of a wavelet-based MRPID controller for benchmark thermal system. IEEE Trans. Ind. Electron. 57(12), 4160–4169 (2010)

    Article  Google Scholar 

  18. Wang, M.L., Paulson, Joel A., Yan, H.C., Shi, H.B.: An adaptive model predictive control strategy for nonlinear distributed parameter systems using the type-2 Takagi-Sugeno Model. Int. J. Fuzzy Syst. 18(5), 792–805 (2016)

    Article  MathSciNet  Google Scholar 

  19. Boldbaatar, E.-A., Lin, C.M.: Self-learning fuzzy sliding-mode control for a water bath temperature control system. Int. J. Fuzzy Syst. 17(1), 31–38 (2015)

    Article  Google Scholar 

  20. Abiyev, R.H., Kaynak, O.: Fuzzy wavelet neural networks for identification and control of dynamic plants—a novel structure and a comparative study. IEEE Trans. Ind. Electron. 55(8), 3133–3140 (2008)

    Article  Google Scholar 

  21. Lu, C.H.: Wavelet fuzzy neural networks for identification and predictive control of dynamic systems. IEEE Trans. Ind. Electron. 58(7), 3046–3058 (2011)

    Article  Google Scholar 

  22. Tsai, C.C., Wu, H.L., Tai, F.C., Chen, Y.S.: Distributed consensus formation control with collision and obstacle avoidance for uncertain networked omnidirectional multi-robot systems using fuzzy wavelet neural networks. J. Fuzzy Syst, Int (2016). doi:10.1007/s40815-016-0239-0. (in press)

    Google Scholar 

  23. Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  24. Tsai, C.C., Chang, Y.L.: Self-tuning PID control using recurrent wavelet neural networks. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC2012), pp. 3105–3110, Seoul, Korea (2012)

  25. Tsai, C.C., Chang, Y.L.: Two degree-of-freedom control using recurrent fuzzy neural networks for a class of nonlinear discrete-time time-delay systems. In: Proceedings of 2012 International Conference on System Science and Engineering (ICSSE2012), Dalian, China (2012)

  26. Tsai, C.C., Chang, Y.L., Tung, S.L.: Two DOF temperature control using RBFNN for stretch PET blow molding machines. In: Proceedings of the 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), San Diego, CA, USA (2014)

  27. Chang, Y.L., Tsai, C.C.: Self-tuning PID control using wavelet fuzzy neural networks. In: Proceedings of 2012 International Conference on Fuzzy Theory and Its Applications (iFuzzy2012), Taichung, Taiwan (2012)

  28. Chang, Y.L., Tsai, C.C.: Adaptive predictive PID control using recurrent wavelet neural networks for a class of nonlinear discrete-time time-delay systems. In: Proceedings of 2016 International Conference on Advanced Robotics and Intelligent Systems (ARIS2016), Taipei, Taiwan (2016)

  29. Chang, Y.L., Tsai, C.C.: Adaptive stable generalized predictive control using TSK fuzzy model for nonlinear discrete-time systems with time-delays. Int. J. Fuzzy Syst. (IJFS) 15(2), 133–141 (2013)

    MathSciNet  Google Scholar 

  30. Tsai, C.T., Tsai, C.C.: Digital PID and feedforward temperature control for PET stretch blow molding machines. In: Proceedings of 2016 International Conference on Advanced Robotics and Intelligent Systems (ARIS2016), Taipei, Taiwan (2016)

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Science and Technology (MOST), the Republic of China, under contract MOST 104-2221-E-005-054-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Chih Tsai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, CC., Tai, FC., Chang, YL. et al. Adaptive Predictive PID Control Using Fuzzy Wavelet Neural Networks for Nonlinear Discrete-Time Time-Delay Systems. Int. J. Fuzzy Syst. 19, 1718–1730 (2017). https://doi.org/10.1007/s40815-017-0405-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0405-z

Keywords

Navigation