Skip to main content
Log in

Direct Adaptive Fuzzy Control of SISO Nonlinear Systems with Input–Output Nonlinear Relationship

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Because the nonlinear relationship between the input and output generally exists in many actual systems. In this paper, a new design method of direct adaptive fuzzy controller is proposed for this class of SISO nonlinear systems. The adaptive law and constraint conditions of the system parameters are given in this study. The stability of the closed-loop system is proved with all state variables being uniformly bounded in the Lyapunov sense. Additionally, the convergence of the fuzzy control system is analyzed. Finally, the simulation results obtained for the practical example show the feasibility, effectiveness and widely use of the designed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tong, S.C., Li, Y.M., Sui, S.A.: Adaptive fuzzy tracking control design for SISO uncertain nonstrict feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 4(6), 1441–1454 (2016)

    Article  Google Scholar 

  2. Tong, S.C., Li, Y.M., Sui, S.A.: Adaptive fuzzy output feedback control for switched nonstrict-feedback nonlinear systems with input nonlinearities. IEEE Trans. Fuzzy Syst. 24(6), 1426–1440 (2016)

    Article  Google Scholar 

  3. Gao, Y., Tong, S.C.: Composite adaptive fuzzy output feedback dynamic surface control design for uncertain nonlinear stochastic systems with input quantization. Int. J. Fuzzy Syst. 17(4), 609–622 (2015)

    Article  MathSciNet  Google Scholar 

  4. Wang, H., Wang, Z.F., Liu, Y.J., Tong, S.C.: Fuzzy tracking adaptive control of discrete-time switched nonlinear systems. Fuzzy Sets Syst. 316(1), 35–48 (2017)

    Article  MathSciNet  Google Scholar 

  5. Liu, Y.J., Tong, S.C.: Adaptive fuzzy identification and control for a class of nonlinear pure-feedback MIMO systems with unknown dead zones. IEEE Trans. Fuzzy Syst. 23(5), 1387–1398 (2015)

    Article  Google Scholar 

  6. Wang, M.L., Joel, A.P., Yan, H.C., Shi, H.B.: An adaptive model predictive control strategy for nonlinear distributed parameter systems using the type-2 Takagi-Sugeno Model. Int. J. Fuzzy Syst. 18(5), 792–805 (2016)

    Article  MathSciNet  Google Scholar 

  7. Shi, W.X.: Observer-based indirect adaptive fuzzy control for SISO nonlinear systems with unknown gain sign. Neurocomputing 171(1), 1598–1605 (2016)

    Article  Google Scholar 

  8. Boulkroune, A., Bounar, N., M′Saad, M., Farza, M.: Indirect adaptive fuzzy control scheme based on observer for nonlinear systems: a novel SPR-filter approach. Neurocomputing 135(5), 378–387 (2014)

    Article  Google Scholar 

  9. Lin, T.C., Lin, Y.C., Du, Z.B., Chu, T.C.: Indirect adaptive fuzzy supervisory control with state observer for unknown nonlinear time delay system. Int. J. Fuzzy Syst. 19(1), 215–224 (2017)

    Article  MathSciNet  Google Scholar 

  10. Ardashir, M., Farzad, H.: A new robust observer-based adaptive type-2 fuzzy control for a class of nonlinear systems. Appl. Soft Comput. 37, 204–216 (2015)

    Article  Google Scholar 

  11. Reza, S.: Observer-based adaptive interval type-2 fuzzy control of uncertain MIMO nonlinear systems with unknown asymmetric saturation actuators. Neurocomputing 171(1), 1053–1065 (2016)

    Google Scholar 

  12. Seyed, H.M, Mohsen, G., Horacio, J.M.: A novel integral-based event triggering control for linear time-invariant systems. In: 53rd IEEE Conference on Decision and Control, pp. 1239–1243 (2014)

  13. Ali, G., Nastaran, V.: Input-output stabilizing controller synthesis for SISO T–S fuzzy systems by applying large gain theorem. Int. J. Fuzzy Syst. 18(4), 550–556 (2016)

    Article  MathSciNet  Google Scholar 

  14. Liu, J., Ruan, X.: Networked iterative learning control for linear-time-invariant systems with random packet losses. In: Proceedings of the 35th Chinese Control Conference, pp. 38–43 (2016)

  15. Jonathan, E., Ying, T., Darwin, L., Denny, O.: On the positive output controllability of linear time invariant systems. Automatica 71, 202–209 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fernando, C., Debbie, H., Leonid, M.F.: Integral sliding-mode control for linear time-invariant implicit systems. Automatica 50(3), 971–975 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yan, W., Jonathan, S.T.: Adaptive control of linear time invariant systems via a wavelet network and applications to control Lorenz chaos. Appl. Math. Comput. 218(1), 22–31 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Marzieh, N., Mohamad, H.: A new approach for the optimal fuzzy linear time invariant controlled system with fuzzy coefficients. J. Comput. Appl. Math. 259(15), 682–694 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Qu, Z.H.: Robust control of nonlinear systems by estimating time variant uncertainties. In: Proceedings of the 39th IEEE Conference on Decision and Control, vol. 3, pp. 3019–3024 (2000)

  20. Wang, D.G., Song, W.Y., Li, H.X.: Analysis and design of time-variant fuzzy systems based on dynamic fuzzy inference. Comput. Math Appl. 60(3), 464–489 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xia, Baizhan, Qin, Yuan, Dejie, Yu., Jiang, Chao: Dynamic response analysis of structure under time-variant interval process model. J. Sound Vib. 381, 121–138 (2016)

    Article  Google Scholar 

  22. Wang, D., Mu, C.: Adaptive-critic-based robust trajectory tracking of uncertain dynamics and its application to a spring-mass-damper system. IEEE Trans. Ind. Electron. 99(99), 1–10 (2017)

    Google Scholar 

  23. Takashi, A., Yuh, Y.: Daisuke Tsubakino, vibration suppression of mass-spring-damper system with dynamic dampers using IDA-PBC. IFAC Proc. 45(19), 42–47 (2012)

    Article  Google Scholar 

  24. Dong, X.M., Yu, M., Liao, C.R., Chen, W.M., Huang, S.L.: Research on adaptive fuzzy logic control for automobile magnetorheological semiactive suspension. China J. Highw. Transp. 19(2), 111–115 (2006)

    Google Scholar 

  25. Ab Talib, M.H., Darus, I.Z.: Self-tuning pid controller with mr damper and hydraulic actuator for suspension system. In: International Conference on Computational Intelligence, pp. 119–124 (2013)

  26. Carlos, A., Vivas, L., Diana, H.A., Nguyen, M.Q., Ruben, M.M., Olivier, S.: Force control system for an automotive semi-active suspension. IFAC-Papers OnLine 48(26), 55–60 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11072090) and the Opening Project of Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology (012KFMS12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Li, Y. & Hua, J. Direct Adaptive Fuzzy Control of SISO Nonlinear Systems with Input–Output Nonlinear Relationship. Int. J. Fuzzy Syst. 20, 1069–1078 (2018). https://doi.org/10.1007/s40815-017-0414-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0414-y

Keywords

Navigation