Skip to main content

Advertisement

Log in

Image Processing-Based Center Calculation Method for General and Interval Type-2 Fuzzy Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Despite being a good method against uncertainties, the high complexity of the operations in type-2 fuzzy system makes it slow. So, it should be reduced to use type-2, especially in real-time problems. In this study, a method based on image digitization has been proposed for type-reduction and defuzzification steps, which are forming the actual computational complexity in type-2 fuzzy systems. Instead of solutions using iterative and complex methods, the problem is converted into image processing problem by digitizing the fired outputs. The deduction methods such as the center of gravity are computed easily on digitized images. Example scenarios show that the work done is superior to KM algorithm in terms of both precision and computational complexity. In addition, different simulations were conducted to demonstrate the superiority of the study over real problems, and the study was tested for a complex human model motion control problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Andreu-Perez, J., Cao, F., Hagras, H., Yang, G.Z.: A self-adaptive online brain machine interface of a humanoid robot through a general type-2 fuzzy inference system. IEEE Trans. Fuzzy Syst. PP(99), 1 (2016)

    Google Scholar 

  2. Mendel, J.M., Wu, D.: Interval Type-2 Fuzzy Set Subsethood Measures as A Decoder for Perceptual Computing. Signal and Image Processing Institute Ming Hsieh Department of Electrical Engineering University of Southern California, Los Angeles (2010)

    Google Scholar 

  3. Linda, O., Manic, M.: Monotone centroid flow algorithm for type-reduction of general type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. 20(5), 805–819 (2012)

    Article  Google Scholar 

  4. Hosseini, R., Qanadli, S.D., Barman, S., Mazinani, M., Ellis, T., Dehmeshki, J.: An Automatic Approach for Learning and Tuning Gaussian Interval Type-2 Fuzzy Membership Functions Applied to Lung CAD Classification System. IEEE Transactions on Fuzzy Systems 20(2), 224–234 (2012)

    Article  Google Scholar 

  5. Zadeh, L.: Outline of a new approach to the analysis of complex systems and decision process. IEEE Trans. Syst. Man Cybern. SMC-3(1), 28–44 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Tellez-Velazques, A., Molina-Lozano, H., Villa-Vargas, L.A., Cruz-Barbosa, R., Lugo-Gonzalez, E., Batyrshin, I.Z., Rudas, I.J.: A feasible genetic optimization strategy for parametric interval type-2 fuzzy logic system. Int. J. Fuzzy Syst. 1–21 (2017)

  7. Afful-Dadzie, E., Oplatkova, Z.K., Prieto, L.A.B.: Comparative state-of-the-art survey of classical fuzzy set and intuitionistic fuzzy sets in multi-criteria decision making. Int. J. Fuzzy Syst. 19, 1–13 (2016)

    Google Scholar 

  8. Senthil Kumar, P.: A simple method for solving type-2 and type-4 fuzzy transportation problems. Int. J. Fuzzy Logic Intell. Syst. 16(4), 225–237 (2016)

    Article  Google Scholar 

  9. Karaköse M.: Sine-square embedded fuzzy sets. In: IEEE International Conference on Systems Man and Cybernetics (SMC2010), pp. 3628–3631 (2010)

  10. Khanesar, M.A., Kayacan, E., Teshnehlab, M., Kaynak, O.: Analysis of the noise reduction property of type-2 fuzzy logic systems using a novel type-2 membership function. IEEE Trans. Syst. Man Cybern. B Cybern. 41, 1395–1406 (2011)

    Article  Google Scholar 

  11. Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy Set. Inf. Sci. 132, 195–220 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wu, D., Mendel, J.M.: Enhanced Karnik-Mendel Algorithms. IEEE Trans. Fuzzy Syst. 17(4), 923–934 (2009)

    Article  Google Scholar 

  13. Yeh, C.Y., Jeng, W.H.R., Lee, S.J.: An enhanced type-reduction algorithm for type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. 19(2), 227–240 (2011)

    Article  Google Scholar 

  14. Zhai, D., Mendel, J.M.: Computing the centroid of a general type-2 fuzzy set by means of the centroid-flow algorithm. IEEE Trans. Fuzzy Syst. 19(3), 401–422 (2011)

    Article  Google Scholar 

  15. Li, C., Yi, J., Zhao, D.: A novel type-reduction method for interval type-2 fuzzy logic systems. In: IEEE Fifth International Conference on Fuzzy Systems and Knowledge Discovery, pp. 157–161 (2008)

  16. Gafa, C., Coupland, S.: A new recursive type-reduction procedure for general type-2 fuzzy sets. In: IEEE Symposium on Advances in Type-2 Fuzzy Logic Systems (T2FUZZ), pp. 44–49 (2011)

  17. Nie, M., Tan, W.W.: Towards an efficient type-reduction method for interval type-2 fuzzy logic systems. IEEE International Conference on Fuzzy Systems, pp. 1425–1432 (2008)

  18. Wu, D.: Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: overview and comparisons. IEEE Trans. Fuzzy Syst. 21(1), 80–99 (2013)

    Article  Google Scholar 

  19. Wu, D., Nie, M.: Comparison and practical implementation of type-reduction algorithms for type-2 fuzzy sets and systems. In: IEEE International Conference on Fuzzy Systems, Taipei, Taiwan, pp. 2131–2138 (2011)

  20. Li, J., John, R., Coupland, S., Kendall, G.: On nie-tan operatör and type-reduction of interval type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. PP(99), 1 (2017)

    Google Scholar 

  21. Greenfield, S., Chiclana, F., John, R., Coupland, S.: The sampling method of defuzzification for type-2 fuzzy sets: experimental evaluation. Inf. Sci. 189, 77–92 (2012)

    Article  MathSciNet  Google Scholar 

  22. Ulu, C., Güzelkaya, M., Eksin, I.: A dynamic defuzzification method for interval type-2 fuzzy logic controllers. In: International Conference on Mechatronics, Istanbul, Turkey, pp. 318–323 (2011)

  23. Linda, O., Manic, M.: Centroid density of interval type-2 fuzzy sets: comparing stochastic and deterministic defuzzification. IEEE International Conference on Fuzzy Systems, pp. 1560–1567. , Taipei, Taiwan (2011)

  24. Xu, Z., Yang, C., Ma, H., Fu, M.: Fuzzy-based adaptive motion control of a virtual iCub robot in human-robot-interaction. In: IEEE International Conference on Fuzzy Systems, pp. 1463–1468, July 2014

  25. Ali, S.K., Fidaus, A.R., Tokhi, M.O., Al-Rezage, G.: Tracking human upper-limb movements with sliding mode control type-2 fuzzy logic. In: 21st International Conference on Methods and Models in Automation and Robotics, pp. 426–431, Sept 2016

  26. Qu, X., Nussbaum, M.A.: Simulating human lifting motions using fuzzy-logic control. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 39–1, 109–118 (2009)

    Google Scholar 

  27. Hamrawi, H., Coupland, S., John, R.: Type-2 fuzzy alpha-cuts. IEEE Trans. Fuzzy Syst. 25(3), 682–692 (2016)

    Article  Google Scholar 

  28. Figueroa-Garcia, J.C., Hernandez-Perez, G.J., Chalco-Cano, Y.: On computing the footprint of uncertainty of an interval type-2 fuzzy set as uncertainty measure. In: Applied Computer Sciences in Engineering: 3rd Workshop on Engineering Applications (WEA 2016), pp. 247–256, Sept 2016

  29. Liu, F.: An efficient centroid type-reduction strategy for general type-2 fuzzy logic system. Inf. Sci. 178(9), 2224–2236 (2008)

    Article  MathSciNet  Google Scholar 

  30. Wagner, C., Hagras, H.: Toward general type-2 fuzzy logic systems based on zslices. IEEE Trans. Fuzzy Syst. 18, 4 (2010)

    Article  Google Scholar 

  31. Hassani, H., Zarei, J., Arefi, M.M., Razavi-Far, R.R.: zSlices-based general type-2 fuzzy fusion of support vector machines with application to bearing fault detection. IEEE Tran. Ind. Electron. 64(9), 7210–7217 (2017)

    Article  Google Scholar 

  32. Kuo, C.H., Kuo, Y.C., Chou, H.C., Lin, Y.T.: P300-based brain-computer interface with latency estimation using ABC-based interval type-2 fuzzy logic system. Int. J. Fuzzy Syst. 19(2), 529–541 (2017)

    Article  Google Scholar 

  33. Xiao, B., Lam, H.K., Li, H.: Stabilization of Interval type-2 polynomial-fuzzy-model-based control systems. IEEE Trans. Fuzzy Syst. 25(1), 205–217 (2017)

    Article  Google Scholar 

  34. Baydokhty, M.E., Zare, A., Balochian, S.: Performance of optimal hierarchical type 2 fuzzy controller for load-frequency system with production rate limitation and governor dead band. Alex. Eng. J. 55(1), 379–397 (2016)

    Article  Google Scholar 

  35. Wang, W., Chou, H., Chen, Y., Lu, R.: Fuzzy control strategy for a hexapod robot walking on an incline. Int. J. Fuzzy Syst 1, 1–15 (2017)

    MathSciNet  Google Scholar 

  36. Castillo, O., Amador, A.L., Castro, J., Garcia, V.M.: A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inf. Sci. 354, 257–274 (2016)

    Article  Google Scholar 

  37. El-Nagar, A., El-Bardani, M.: Parallel realization for self-tuning interval type-2 fuzzy controller. Eng. Apps. Artif. Intell. 61, 8–20 (2017)

    Article  Google Scholar 

  38. Karaköse, M.: İnsan Hareketlerinin Analiz ve Simülasyonu için Bulanık Mantık Yaklaşımı, Elektrik—Elektronik ve Bilgisayar Mühendisliği Sempozyumu (2010)

  39. Khanesar, M.A., Kaynak, O., Gao, H.: Improved Karnik–Mendel algorithm: eliminating the need for sorting. In: International Conference on Mechatronics and Control (ICMC), pp. 204–209 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Yetiş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakose, M., Yetiş, H. & Makinist, S. Image Processing-Based Center Calculation Method for General and Interval Type-2 Fuzzy Systems. Int. J. Fuzzy Syst. 20, 1699–1712 (2018). https://doi.org/10.1007/s40815-017-0427-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0427-6

Keywords

Navigation