Skip to main content
Log in

Generalized Pythagorean Fuzzy Maclaurin Symmetric Means and Its Application to Multiple Attribute SIR Group Decision Model

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Pythagorean fuzzy sets, originally proposed by Yager (IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), pp 57–61, 2013), which are convenient to describe vagueness and impression in real-world problems, can be regarded as a novel extension of intuitionistic fuzzy sets. Generalized Maclaurin symmetric mean comes as an extension of classical Maclaurin symmetric mean. Their prominent feature is that they can both capture overall interrelationships and also focus on individual importance among the arguments. However, the generalized Maclaurin symmetric mean can only be considered for aggregating numeric information. In this paper, we investigate the generalized Maclaurin symmetric mean and further extend to Pythagorean fuzzy environment. We develop the Pythagorean fuzzy generalized Maclaurin symmetric mean (PFGMSM), the Pythagorean fuzzy weighted generalized Maclaurin symmetric mean (PFWGMSM), and discuss a variety of their desirable properties. To better understand the proposed parameterization operators, we provide an innovative way to extend the classical superiority and inferiority ranking (SIR) group decision model to Pythagorean fuzzy environment. Then, an approach formed with the aid of PFWGMSM and SIR to multiple attribute group decision-making with Pythagorean fuzzy information is developed. Finally, an illustrative example concerning supply chain financial risk decision-making is provided to verify the proposed method and demonstrate its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MATH  Google Scholar 

  2. Yager, R.R., Abbasov, A.M.: Pythagorean membership grades, complex numbers, and decision making. Int. J. Intell. Syst. 28(5), 436–452 (2013)

    Article  Google Scholar 

  3. Zhang, X.L., Xu, Z.S.: Extension of TOPSIS to multiple criteria decision making with pythagorean fuzzy sets. Int. J. Intell. Syst. 29(12), 1061–1078 (2014)

    Article  MathSciNet  Google Scholar 

  4. Peng, X.D., Yang, Y.: Some results for pythagorean fuzzy sets. Int. J. Intell. Syst. 30(11), 1133–1160 (2015)

    Article  MathSciNet  Google Scholar 

  5. Yager, R.R.: Pythagorean fuzzy subsets. IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pp. 57–61 (2013)

  6. Yager, R.R.: Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 22(4), 958–965 (2014)

    Article  Google Scholar 

  7. Beliakov, G., James, S.: Averaging aggregation functions for preferences expressed as Pythagorean membership grades and fuzzy orthopairs. In: IEEE International Conference on Fuzzy Systems, pp. 298–305 (2014)

  8. Reformat, M.Z., Yager, R.R.: Suggesting recommendations using Pythagorean fuzzy sets illustrated using netflix movie data. In: International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 546–556 (2014)

  9. Peng, X.D., Yuan, H.Y., Yang, Y.: Pythagorean fuzzy information measures and their applications. Int. J. Intell. Syst. (2017). https://doi.org/10.1002/int.21880

    Google Scholar 

  10. Garg, H.: A novel correlation coefficients between Pythagorean fuzzy sets and its applications to decision-making processes. Int. J. Intell. Syst. 31(12), 1234–1252 (2016)

    Article  Google Scholar 

  11. Gou, X.J., Xu, Z.S., Ren, P.J.: The properties of continuous Pythagorean fuzzy information. Int. J. Intell. Syst. 31(5), 401–424 (2016)

    Article  Google Scholar 

  12. Zhang, X.L.: Multicriteria Pythagorean fuzzy decision analysis: a hierarchical QUALIFLEX approach with the closeness index-based ranking methods. Inf. Sci. 330, 104–124 (2016)

    Article  Google Scholar 

  13. Peng, X.D., Yang, Y.: Pythagorean fuzzy choquet integral based MABAC method for multiple attribute group decision making. Int. J. Intell. Syst. 31(10), 989–1020 (2016)

    Article  Google Scholar 

  14. Ren, P.J., Xu, Z.S., Gou, X.J.: Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl. Soft Comput. 42, 246–259 (2016)

    Article  Google Scholar 

  15. Liang, D.C., Xu, Z.S., Darko, A.P.: Projection model for fusing the information of Pythagorean fuzzy multicriteria group decision making based on geometric Bonferroni mean. Int. J. Intell. Syst. (2017). https://doi.org/10.1002/int.21879

    Google Scholar 

  16. Garg, H.: A new generalized pythagorean fuzzy information aggregation using Einstein operations and its application to decision making. Int. J. Intell. Syst. 31(9), 886–920 (2016)

    Article  Google Scholar 

  17. Garg, H.: Generalized Pythagorean fuzzy geometric aggregation operators using Einstein t-Norm and t-Conorm for multicriteria decision-making process. Int. J. Intell. Syst. 32(6), 597–630 (2017)

    Article  Google Scholar 

  18. Peng, X.D., Yang, Y.: Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators. Int. J. Intell. Syst. 31(5), 444–487 (2016)

    Article  Google Scholar 

  19. Peng, X.D., Yuan, H.Y.: Fundamental properties of Pythagorean fuzzy aggregation operators. Fundam. Inf. 147(4), 415–446 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Maclaurin, C.: A second letter to Martin Folkes, Esq.; concerning the roots of equations, with the demonstration of other rules in algebra, Phil. Transactions 36, 59 (1729)

    Google Scholar 

  21. Beliakov, G., James, S.J., Mordelová, J., Rückschlossová, T., Yager, R.R.: Generalized Bonferroni mean operators in multi-criteria aggregation. Fuzzy Sets Syst. 161(17), 2227–2242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. He, Y.D., He, Z., Chen, H.Y.: Intuitionistic fuzzy interaction Bonferroni means and its application to multiple attribute decision making. IEEE Trans. Cybern. 45(1), 116–128 (2015)

    Article  MathSciNet  Google Scholar 

  23. Xu, Z.S., Yager, R.R.: Intuitionistic fuzzy Bonferroni means. IEEE Trans. Syst. Man Cybern. Part B Cybern. 41(2), 568–578 (2011)

    Article  Google Scholar 

  24. Liu, P.D., Chen, S.-M.: Group decision making based on Heronian aggregation operators of intuitionistic fuzzy numbers. IEEE Trans. Cybern. (2016). https://doi.org/10.1109/TCYB.2016.2634599

    Google Scholar 

  25. Qin, J.D., Liu, X.W.: An approach to intuitionistic fuzzy multiple attribute decision making based on Maclaurin symmetric mean operators. J. Intell. Fuzzy Syst. 27(5), 2177–2190 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Qin, J.D., Liu, X.W., Pedrycz, W.: Hesitant fuzzy Maclaurin symmetric mean operators and its application to multiple-attribute decision making. Int. J. Fuzzy Syst. 17(4), 509–520 (2015)

    Article  MathSciNet  Google Scholar 

  27. Ju, Y.B., Liu, X.Y., Ju, D.W.: Some new intuitionistic linguistic aggregation operators based on Maclaurin symmetric mean and their applications to multiple attribute group decision making. Soft. Comput. 20(11), 4521–4548 (2016)

    Article  MATH  Google Scholar 

  28. Zhang, Z.H., Wei, F.J., Zhou, S.H.: Approaches to comprehensive evaluation with 2-tuple linguistic information. J. Intell. Fuzzy Syst. 28(1), 469–475 (2015)

    MathSciNet  Google Scholar 

  29. Qin, J.D., Liu, X.W.: Approaches to uncertain linguistic multiple attribute decision making based on dual Maclaurin symmetric mean. J. Intell. Fuzzy Syst. 29(1), 171–186 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, P.D., Zhang, X.: Some Maclaurin symmetric mean operators for single-valued trapezoidal neutrosophic numbers and their applications to group decision making. Int. J. Fuzzy Syst. (2017). https://doi.org/10.1007/s40815-017-0335-9

    Google Scholar 

  31. Wang, J.Q., Yang, Y., Li, L.: Multi-criteria decision-making method based on single-valued neutrosophic linguistic Maclaurin symmetric mean operators. Neural Comput. Appl. (2016). https://doi.org/10.1007/s00521-016-2747-0

    Google Scholar 

  32. Detemple, D., Robertson, J.: On generalized symmetric means of two variables. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 634(672), 236–238 (1979)

    MathSciNet  MATH  Google Scholar 

  33. Xu, X.: The SIR method: a superiority and inferiority ranking method for multiple criteria decision making. Eur. J. Oper. Res. 131(3), 587–602 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zeng, S.Z., Chen, J.P., Li, X.S.: A hybrid method for pythagorean fuzzy multiple-criteria decision making. Int. J. Inf. Technol. Decis. Making 15(2), 403–422 (2016)

    Article  Google Scholar 

  35. Wei, G.W., Lu, M.: Pythagorean Fuzzy Maclaurin symmetric mean operators in multiple attribute decision making. Int. J. Intell. Syst. (2017). https://doi.org/10.1002/int.21911

    Google Scholar 

  36. Pedrycz, W., Song, M.: Analytic hierarchy process (AHP) in group decision making and its optimization with an allocation of information granularity. IEEE Trans. Fuzzy Syst. 19(3), 527–539 (2011)

    Article  Google Scholar 

  37. Cabrerizo, F.J., Herrera-Viedma, E., Pedrycz, W.: A method based on PSO and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts. Eur. J. Oper. Res. 230(3), 624–633 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pedrycz, W.: Granular computing: analysis and design of intelligent systems. CRC Press, Boca Raton (2013)

    Book  Google Scholar 

  39. Cabrerizo, F.J., Ureña, R., Pedrycz, W., Herrera-Viedma, E.: Building consensus in group decision making with an allocation of information granularity. Fuzzy Sets Syst. 255, 115–127 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pedrycz, W.: Allocation of information granularity in optimization and decision-making models: towards building the foundations of granular computing. Eur. J. Oper. Res. 232(1), 137–145 (2014)

    Article  Google Scholar 

  41. Pedrycz, W.: From fuzzy models to granular fuzzy models. Int. J. Comput. Intell. Syst. 9(sup1), 35–42 (2016)

    Article  Google Scholar 

  42. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, Y.-M., Luo, Y., Liu, X.W.: Two new models for determining OWA operator weights. Comput. Ind. Engr. 52(2), 203–209 (2007)

    Article  Google Scholar 

  44. Sang, X.Z., Liu, X.W.: An analytic approach to obtain the least square deviation OWA operator weights. Fuzzy Sets Syst. 240, 103–116 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (NSFC) under Project 71701158, MOE (Ministry of Education in China) Project of Humanities and Social Sciences (Project No. 17YJC630114), and the Fundamental Research Funds for the Central Universities 2017VI010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jindong Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, J. Generalized Pythagorean Fuzzy Maclaurin Symmetric Means and Its Application to Multiple Attribute SIR Group Decision Model. Int. J. Fuzzy Syst. 20, 943–957 (2018). https://doi.org/10.1007/s40815-017-0439-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0439-2

Keywords

Navigation