Skip to main content
Log in

A New Method to Reliable H Control of Nonlinear Stochastic Systems with Actuator Faults

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

By presenting actuator faults as a Markov process, this paper is concerned with the reliable \(H_{\infty }\) control of stochastic nonlinear systems which are approximated by an Itô-type Takagi–Sugeno fuzzy structure with an affine structure. The objective is to probe a static output \(H_\infty\) control scheme such that the resultant closed-loop system is stochastically stable with the required \(H_\infty\) performance. To realize this aim, with the help of Lyapunov stability and robust methodologies, a new method to solve the static output controller is established in the framework of linear matrix inequalities. Compared with the existing result, the proposed method renders a less conservative \(H_\infty\) performance level \(\gamma\), which is verified by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Higham, D.: An algorithmic introduction to numerical simulation of stochastic differential equations. Soc. Ind. Appl. Math. 43, 525–546 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. Read. Fuzzy Sets Intell. Syst. 15, 387–403 (1993)

    Article  Google Scholar 

  3. Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 15, 350–358 (2007)

    Article  Google Scholar 

  4. Chen, S., Chang, Y., Su, S., Chung, S., Lee, T.: Robust static output-feedback stabilization for nonlinear discrete-time systems with time delay via fuzzy control approach. IEEE Trans. Fuzzy Syst. 13, 263–272 (2005)

    Article  Google Scholar 

  5. Tseng, C.S., Chen, B.S.: Robust static output feedback fuzzy control design for a class of nonlinear stochastic systems. In: IEEE International Conference on Fuzzy Systems, pp. 1–6 (2010)

  6. Su, X., Shi, P., Wu, L., Nguang, S.K.: Induced \(l_2\) filtering of fuzzy stochastic systems with time-varying delays. IEEE Trans. Cybern. 43, 1251–1264 (2013)

    Article  Google Scholar 

  7. Lam, H.K., Tsai, S.H.: Stability analysis of polynomial-fuzzy-model-based control systems with mismatched premise membership functions. IEEE Trans. Fuzzy Syst. 22, 223–229 (2014)

    Article  Google Scholar 

  8. Dong, J., Yang, G.H.: Reliable state feedback control of T–S fuzzy systems with sensor faults. IEEE Trans. Fuzzy Syst. 23, 421–433 (2015)

    Article  Google Scholar 

  9. Dong, J., Yang, G.H.: Static output feedback \({{\mathscr {H}}}_{\infty }\) control of a class of nonlinear discrete-time systems. Fuzzy Sets Syst. 160, 2844–2859 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Qiao, H., Li, Z., Chang, X.: Fuzzy filtering for a class of nonlinear systems with feedback uncertainties. Int. J. Fuzzy Syst. 18, 395–404 (2016)

    Article  MathSciNet  Google Scholar 

  11. Chang, X.: Robust nonfragile \(H_\infty\) filtering of fuzzy systems with linear fractional parametric uncertainties. IEEE Trans. Fuzzy Syst. 20, 1001–1011 (2012)

    Article  Google Scholar 

  12. Wang, H., Yang, G.H.: Dynamic output feedback \({{\mathscr {H}}}_{\infty }\) control for affine fuzzy systems. Int. J. Syst. Sci. 44, 1102–1111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bourahala, F., Guelton, K., Manamanni, N., Khaber, F.: Relaxed controller design conditions for Takagi–Sugeno systems with state time-varying delays. Int. J. Fuzzy Syst. 19, 1406–1416 (2017)

    Article  MathSciNet  Google Scholar 

  14. Brahim, I., Mehdi, D., Chaabane, M.: Robust fault detection for uncertain T–S fuzzy system with unmeasurable premise variables: descriptor approach. Int. J. Fuzzy Syst. 20, 416–425 (2018)

    Article  MathSciNet  Google Scholar 

  15. Hua, M., Yao, F., Cheng, P., Fei, J., Ni, J.: Delay-dependent \(L_2\)-\(L_\infty\) filtering for fuzzy neutral stochastic time-delay systems. Signal Process. 137, 98–108 (2017)

    Article  Google Scholar 

  16. Feng, G.: Controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst. 11, 605–612 (2003)

    Article  Google Scholar 

  17. Johansson, M., Rantzer, A., Arzen, K.: Piecewise quadratic stability of fuzzy systems. IEEE Trans. Fuzzy Syst. 7, 713–722 (1999)

    Article  Google Scholar 

  18. Wang, H., Yang, G.H.: Piecewise controller design for affine fuzzy systems via dilated linear matrix inequality characterizations. ISA Trans. 51, 771–777 (2012)

    Article  Google Scholar 

  19. Iervolino, R., Vasca, F., Iannelli, L.: Cone-copositive piecewise quadratic Lyapunov functions for conewise linear systems. IEEE Trans. Autom. Control 60, 3077–3082 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Heemels, W.P.M.H., Kundu, A., Daafouz, J.: On Lyapunov–Metzler inequalities and S-procedure characterizations for the stabilization of switched linear systems. IEEE Transa. Autom. Control 62, 4593–4597 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Qiu, J., Feng, G., Gao, H.: Static-output-feedback \({\mathscr {H}}_{\infty }\) control of continuous-time T–S fuzzy affine systems via piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst. 21, 245–261 (2013)

    Article  Google Scholar 

  22. Zhang, K., Jiang, B., Staroswiecki, M.: Dynamic output feedback-fault tolerant controller design for Takagi–Sugeno fuzzy systems with actuator faults. IEEE Trans. Fuzzy Syst. 18, 194–201 (2010)

    Article  Google Scholar 

  23. Li, J.: Distributed cooperative tracking of multi-agent systems with actuator faults. Trans. Inst. Meas. Control 37, 1041–1048 (2015)

    Article  Google Scholar 

  24. Jin, X.: Iterative learning control for output constrained nonlinear systems with input quantization and actuator faults. Int. J. Robust Nonlinear Control 28, 729–741 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. MacFarlane, A.: Complex variable methods for linear multivariable feedback systems. Taylor & Francis Ltd, London (1980)

    Google Scholar 

  26. Yang, G.H., Wang, J.L., Soh, Y.C.: Reliable \(H_\infty\) control design for linear systems. Automatica 37, 717–725 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ye, D., Su, L., Wang, J., Pan, Y.: Adaptive reliable \(H_\infty\) optimization control for linear systems with time-varying actuator fault and delays. IEEE Trans. Syst. Man Cybern. Systems 47, 1635–1643 (2017)

    Article  Google Scholar 

  28. Lee, S.H., Park, M.J., Kwon, O.M.: Reliable control for linear systems with time-varying delays and parameter uncertainties. Int. J. Comput. Math. 94, 1412–1429 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, B., Liu, X.: Reliable control design of fuzzy dynamic systems with time-varying delay. Fuzzy Sets Syst. 146, 349–374 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sakthivela, R., Shi, P., Arunkumard, A., Mathiyalagand, K.: Robust reliable \(H_\infty\) control for fuzzy systems with random delays and linear fractional uncertainties. Fuzzy Sets Syst. 302, 65–81 (2016)

    Article  MathSciNet  Google Scholar 

  31. Gassara, H., El Hajjaji, A., Chaabane, M.: Observer-based robust \(H_\infty\) reliable control for uncertain T–S fuzzy systems with state time delay. IEEE Trans. Fuzzy Syst. 18, 1027–1040 (2010)

    Article  MATH  Google Scholar 

  32. Zhang, C., Hu, J., Qiu, J., Chen, Q.: Reliable output feedback control for T–S fuzzy systems with decentralized event triggering communication and actuator failures. IEEE Trans. Cybern. 47, 2592–2602 (2017)

    Article  Google Scholar 

  33. Chiu, C., Liu, C.: Output feedback fuzzy regressive PI control of time-delay systems with nonlinear delay input/output. Int. J. Fuzzy Syst. 18, 15–27 (2016)

    Article  MathSciNet  Google Scholar 

  34. Wei, Y., Qiu, J., Lam, H.K., Wu, L.: Approaches to T–S fuzzy-affine-model-based reliable output feedback control for nonlinear Itô stochastic systems. IEEE Trans. Fuzzy Syst. 25, 569–583 (2017)

    Article  Google Scholar 

  35. Fang, Y., Loparo, K.A.: Stabilization of continuous-time jump linear systems. IEEE Trans. Autom. Control 47, 1590–1603 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shi, P., Li, F.: A survey on Markovian jump systems: modeling and design. Int. J. Control Autom. Syst. 13, 1–16 (2015)

    Article  Google Scholar 

  37. Mao, X.: Stochastic differential equations and applications. Elsevier, London (2007)

    MATH  Google Scholar 

  38. Boyd, S., EI Ghaoui, L., Feron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory. Siam, New Delhi (1994)

    Book  MATH  Google Scholar 

  39. Shen, M., Ye, D.: A finite frequency approach to control of Markov jump linear systems with incomplete transition probabilities. Appl. Math. Comput. 295, 53–64 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Sato, M.: Gain-scheduled output-feedback controllers depending solely on scheduling parameters via parameter-dependent Lyapunov functions. Automatica 47, 2786–2790 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants (61773200, 61403189), the peak of six talents in Jiangsu Province under Grant 2015XXRJ-011, the Doctoral Foundation of Ministry of Education of China under Grant 20133221120012, the Natural Science Foundation of Jiangsu Province of China under Grant BK20130949.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouquan Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, A., Shen, M. A New Method to Reliable H Control of Nonlinear Stochastic Systems with Actuator Faults. Int. J. Fuzzy Syst. 21, 60–71 (2019). https://doi.org/10.1007/s40815-018-0539-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0539-7

Keywords

Navigation