Skip to main content
Log in

Adaptive Fuzzy Sliding Mode Control for Nonlinear Uncertain SISO System Optimized by Differential Evolution Algorithm

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, a new adaptive fuzzy sliding mode controller (AFSMC) is proposed for single-input single-output (SISO) nonlinear systems with uncertainties and external disturbances. An adaptive fuzzy model is used to approximate the unknown and uncertain features of a nonlinear system. Furthermore, the fuzzy model parameters are optimally identified with a differential evolution algorithm. The novel AFSMC algorithm is designed using sliding mode control. The adaptive fuzzy law is adaptively generated with constraints based on Lyapunov stability theory to guarantee the asymptotic stability of the closed-loop nonlinear uncertain SISO system. Experimental results are presented to demonstrate that the proposed AFSMC provides a robust and simple approach to effectively control the highly nonlinear uncertain SISO systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electro-Mechanical Systems. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  2. Young, K.D., Utkin, V.I., Ozguner, U.: A control engineer’s guide to sliding mode control. IEEE Trans. Control Syst. Technol. 7(3), 328–342 (1999)

    Article  Google Scholar 

  3. Shtessel, Y., et al.: Sliding Mode Control and Observation, vol. 10. Birkhäuser, New York (2014)

    Book  Google Scholar 

  4. Wang, W.-Y., et al.: H/sub/spl infin//tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy–neural approach. IEEE Trans. Syst. Man Cybern. B Cybern. 32(4), 483–492 (2002)

    Article  Google Scholar 

  5. Li, H., Wang, J., Shi, P.: Output-feedback based sliding mode control for fuzzy systems with actuator saturation. IEEE Trans. Fuzzy Syst. 24(6), 1282–1293 (2016)

    Article  Google Scholar 

  6. Nekoukar, V., Erfanian, A.: Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems. Fuzzy Sets Syst. 179(1), 34–49 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yang, Y., Yan, Y.: Neural network approximation-based nonsingular terminal sliding mode control for trajectory tracking of robotic airships. Aerosp. Sci. Technol. 54, 192–197 (2016)

    Article  Google Scholar 

  8. Ma, X., et al.: Neural-network-based sliding-mode control for multiple rigid-body attitude tracking with inertial information completely unknown. Inf. Sci. 400, 91–104 (2017)

    Article  Google Scholar 

  9. Zou, A.-M., et al.: Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network. IEEE Trans. Syst. Man Cybern. B Cybern. 41(4), 950–963 (2011)

    Article  Google Scholar 

  10. Wang, L., Chai, T., Zhai, L.: Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans. Industr. Electron. 56(9), 3296–3304 (2009)

    Article  Google Scholar 

  11. Baek, J., Jin, M., Han, S.: A new adaptive sliding-mode control scheme for application to robot manipulators. IEEE Trans. Ind. Electron. 63(6), 3628–3637 (2016)

    Article  Google Scholar 

  12. Moussaoui, S., Boulkroune, A.: Stable adaptive fuzzy sliding-mode controller for a class of underactuated dynamic systems. In: Chadli, M., Bououden, S., Zelinka, I. (eds.) Recent Advances in Electrical Engineering and Control Applications, pp. 114–124. Springer, Cham (2017)

    Chapter  Google Scholar 

  13. Khazaee, M., et al.: Adaptive fuzzy sliding mode control of input-delayed uncertain nonlinear systems through output-feedback. Nonlinear Dyn. 87(3), 1943–1956 (2017)

    Article  MATH  Google Scholar 

  14. Lin, D., Wang, X.: Observer-based decentralized fuzzy neural sliding mode control for interconnected unknown chaotic systems via network structure adaptation. Fuzzy Sets Syst. 161(15), 2066–2080 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Park, B.S., et al.: Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty. IEEE Trans. Control Syst. Technol. 17(1), 207–214 (2009)

    Article  Google Scholar 

  16. Ho, H.F., Wong, Y.K., Rad, A.B.: Adaptive fuzzy sliding mode control design: Lyapunov approach. In: 5th Asian Control Conference, vol. 3. IEEE (2004)

  17. Khanesar, M.A., et al.: Adaptive indirect fuzzy sliding mode controller for networked control systems subject to time-varying network-induced time delay. IEEE Trans. Fuzzy Syst. 23(1), 205–214 (2015)

    Article  Google Scholar 

  18. Guo, Y., Woo, P.-Y.: An adaptive fuzzy sliding mode controller for robotic manipulators. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 33(2), 149–159 (2003)

    Article  Google Scholar 

  19. Rastegar, S., Araújo, R., Mendes, J.: Online identification of Takagi–Sugeno fuzzy models based on self-adaptive hierarchical particle swarm optimization algorithm. Appl. Math. Model. 45, 606–620 (2017)

    Article  MathSciNet  Google Scholar 

  20. Li, C., Zou, W., Zhang, N., Lai, X.: An evolving T–S fuzzy model identification approach based on a special membership function and its application on pump-turbine governing system. Eng. Appl. Artif. Intell. 69, 93–103 (2018)

    Article  Google Scholar 

  21. Dziwiński, P., Bartczuk, Ł., Tingwen, H.: A method for non-linear modelling based on the capabilities of PSO and GA algorithms. In: International Conference on Artificial Intelligence and Soft Computing, pp. 221–232, June 2017

  22. Karaboga, D., Kaya, E.: Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey. Artif. Intell. Rev. (2018). https://doi.org/10.1007/s10462-017-9610-2

    Google Scholar 

  23. Son, N.N., Anh, H.P.H., Chau, T.D.: Adaptive neural model optimized by modified differential evolution for identifying 5-DOF robot manipulator dynamic system. Soft. Comput. 22(3), 979–988 (2018)

    Article  Google Scholar 

  24. Van Kien, C., Anh, H.P.H., Nam, N.T.: Cascade training multilayer fuzzy model for nonlinear uncertain system identification optimized by differential evolution algorithm. Int. J. Fuzzy Syst. 20(5), 1671–1684 (2018). https://doi.org/10.1007/s40815-017-0431-x

    Article  Google Scholar 

  25. Van Kien, C., Son, N. N., Anh, H.P.H.: Identification of 2-DOF pneumatic artificial muscle system with multilayer fuzzy logic and differential evolution algorithm. In: The 12th IEEE Conference on Industrial Electronics and Applications (ICIEA 2017), pp. 1261–1266 (2017)

  26. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is funded by Ho Chi Minh City University of Technology-VNU-HCM under grant number TNCS-ĐĐT-2017-04 and by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number C2018-20-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Pham Huy Anh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Kien, C., Son, N.N. & Anh, H.P.H. Adaptive Fuzzy Sliding Mode Control for Nonlinear Uncertain SISO System Optimized by Differential Evolution Algorithm. Int. J. Fuzzy Syst. 21, 755–768 (2019). https://doi.org/10.1007/s40815-018-0558-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0558-4

Keywords

Navigation