Skip to main content
Log in

Prototypes Reduction and Feature Selection based on Fuzzy Boundary Area for Nearest Neighbor Classifiers

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

For prototype-based classifiers, the number of prototypes results in increasing the computational time so that it takes very long time for a prototype-based classifier to determine the class label of an associated data. Many researchers have been interested in the reduction of the number of prototypes without degradation of the classification ability of prototype-based classifiers. In this paper, we introduce a new method for generating prototypes based on the assumption that the prototypes positioned near the boundary surface are important for improving the classification abilities of nearest neighbor classifiers. The main issue of this paper is how to locate the new prototypes as close as possible to the boundary surface. To realize this, we consider possibilistic C-Means clustering and conditional C-Means clustering. The clusters obtained by using possibilistic C-Means clustering methods are used to define the boundary areas, and the conditional fuzzy C-Means clustering technique is used to determine the locations of prototypes within the already defined boundary areas. The design procedure is illustrated with the aid of numeric examples that provide a thorough insight into the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Loftsgaarden, D.O., Quesenberry, C.P.: A nonparametric estimate of a multivariate density function. Ann. Math. Stat. 36(3), 1049–1051 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Information Theory IT 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  3. Hardle, W.: Applied Nonparametric Regression. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  4. Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press (1991)

  5. Maron, O., Ratan, A.L.: Multiple-instance learning for natural scene classification. In: Proceedings of the 15th International Conference On Machine Learning, Morgan Kaufmann, San Francisco, pp. 341–349 (1998)

  6. Kim, D.-E., Yu, J.-H., & Sim, K.-B.: EEG feature classification based on grip strength for BCI applications, International Journal of Fuzzy Logic and Intelligent Systems, 15(4), 277-282 (2015)

  7. Jung, H., Chung, Y.D., Liu, L.: Processing generalized k-nearest queries on a wireless broadcast stream. Inf. Sci. 188, 64–79 (2012)

    Article  MathSciNet  Google Scholar 

  8. Lai, J.Z.C., Huang, T.J.: An agglomerative clustering algorithm using a dynamic k-nearest-neighbor list. Inf. Sci. 181, 1722–1734 (2011)

    Article  Google Scholar 

  9. Li, B., Chen, Y.W., Chen, Y.Q.: The nearest neighbor algorithm of local probability centers. IEEE Trans. Syst. Man Cybern. Part B 38(1), 141–154 (2008)

    Article  MathSciNet  Google Scholar 

  10. Sierra, B., Lazkano, E., Irigoien, I., Jauregi, E., Mendialdua, I.: K Nearest neighbor equality: giving equal chance to all existing class. Inf. Sci. 181, 5158–5168 (2011)

    Article  Google Scholar 

  11. Singh, P., Verma, S., Vyas, O.P.: Software fault prediction at design phase. J. Electr. Eng. Technol. 9(5), 1739–1745 (2014)

    Article  Google Scholar 

  12. Lam, W., Keung, C.K., Ling, C.X.: Learning good prototypes for classification using filtering and abstraction of instances. Pattern Recogn. 35(7), 1491–1506 (2002)

    Article  MATH  Google Scholar 

  13. Sproull, R.F.: Refinements to nearest-neighbor searching in k-dimensional tree. Algorithmica 6, 579–589 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim, S.W., Oommen, B.J.: Enhancing prototype reduction schemes with LVQ3-type algorithms. Pattern Recogn. 36(5), 1083–1093 (2003)

    Article  MATH  Google Scholar 

  15. Pedrycz, W.: Conditional fuzzy C-means. Pattern Recogn. Lett. 17(6), 626–632 (1996)

    Google Scholar 

  16. Hart, P.E.: The condensed nearest neighbor rule. IEEE Trans. Inf. Theory IT 14(3), 515–516 (1968)

    Article  Google Scholar 

  17. Gates, G.W.: The reduced nearest neighbor rule. IEEE Trans. Inf. Theory IT 18(3), 431–433 (1972)

    Article  Google Scholar 

  18. Chang, C.L.: Finding prototypes for nearest neighbor classifiers. IEEE Trans. Comput. 23(11), 1179–1184 (1974)

    Article  MATH  Google Scholar 

  19. Ritter, G.L., Woodruff, H.B., Lowery, S.R., Isenhour, T.L.: An algorithm for a selective nearest neighbor rule, IEEE Trans. Inf. Theory IT 21, 665–669 (1975)

    Article  MATH  Google Scholar 

  20. Tomek, I.: Two modifications of CNN. IEEE Trans. Syst. Man Cybern. SMC 6(6), 769–772 (1976)

    MathSciNet  MATH  Google Scholar 

  21. Devijver, P.A., Kittler, J.: On the edited nearest neighbor rule. In: Proceedings of the Fifth International Conference on Pattern Recognition, IEEE Computer Society, Miami, pp. 72–80 (1984)

  22. Fukunaga, K., Mantock, J.M.: Nonparametric data reduction. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 6(1), 115–118 (1984)

    Article  Google Scholar 

  23. Kim, S.W., Oommen, B.J.: On using prototype reduction schemes to optimize kernel-based Fisher discriminant analysis. IEEE Trans. Syst. Man Cybern. Part B 38(2), 564–570 (2008)

    Article  Google Scholar 

  24. Cervantes, A., Galvan, I.M., Isasi, P.: AMPSO: a new particle swarm method for nearest neighborhood classification. IEEE Trans. Syst. Man Cybern. Part B 39(5), 1082–1091 (2009)

    Article  Google Scholar 

  25. Xie, Q., Laszlo, C.A., Ward, R.K.: Vector quantization techniques for nonparametric classifier design. IEEE Trans. Pattern Anal. Mach. Intell. 15(12), 1326–1330 (1993)

    Article  Google Scholar 

  26. Yang, J., Ma, Z., Xie, M.: Multiscale spatial position coding under locality constraint for action recognition. J. Electr. Eng. Technol. 10(4), 1851–1863 (2015)

    Article  Google Scholar 

  27. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 2(3), 408–421 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tomek, I.: An experiment with the edited nearest neighbor. IEEE Trans. Syst. Man Cybern. 6(6), 448–452 (1976)

    MathSciNet  MATH  Google Scholar 

  29. Kuncheva, L.I.: Editing for the k-nearest neighbors rule by a genetic algorithm. Pattern Recogn. Lett. 16, 809–814 (1995)

    Article  Google Scholar 

  30. Garcia, S., Cano, J.R., Herrera, F.: A Memetic algorithm for evolutionary prototype selection: a scaling up approach. Pattern Recogn. 41(8), 2693–2709 (2008)

    Article  MATH  Google Scholar 

  31. Parades, R., Vidal, E.: Learning prototypes and distances: a prototype reduction technique based on nearest neighbor error minimization. Pattern Recogn. 39, 180–188 (2006)

    Article  MATH  Google Scholar 

  32. Song, Q., Yang, X., Soh, Y.C., Wang, Z.M.: An information-theoretic fuzzy C-spherical shells clustering algorithm. Fuzzy Sets Syst. 161(13), 1755–1773 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Huang, W., Oh, S.K., Pedrycz, W.: Fuzzy wavelet polynomial neural networks: analysis and design. IEEE Trans. Fuzzy Syst. 25(5), 1329–1341 (2017)

    Article  Google Scholar 

  34. Huang, W., Oh, S.K., Pedrycz, W.: Hybrid fuzzy wavelet neural networks architecture based on polynomial neural networks and fuzzy set/relation inference-based wavelet neurons. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3452–3462 (2018)

    Article  Google Scholar 

  35. Lee, S.Y., Urtnasan, E., & Lee, K.-J.: Design of a fast learning classifier for sleep apnea database based on fuzzy SVM, International Journal of Fuzzy Logic and Intelligent Systems, 17(3), 187-193 (2017)

  36. Parades, R., Vidal, E.: Learning prototypes and distance: a prototype reduction technique based on nearest neighbor error minimization. Pattern Recogn. 39, 180–188 (2006)

    Article  MATH  Google Scholar 

  37. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

Download references

Acknowledgement

This paper was supported by Wonkwang University in 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Chon Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, TC., Roh, SB., Kim, Y.S. et al. Prototypes Reduction and Feature Selection based on Fuzzy Boundary Area for Nearest Neighbor Classifiers. Int. J. Fuzzy Syst. 21, 639–654 (2019). https://doi.org/10.1007/s40815-018-0562-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0562-8

Keywords

Navigation