Skip to main content
Log in

Adaptive Fuzzy PID Control Strategy for Spacecraft Attitude Control

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, a novel adaptive fuzzy proportional–integral–derivative (AFPID) controller is designed for geostationary satellite attitude control. In order to design the AFPID controller, first a fuzzy PID (FPID) controller is proposed in which two fuzzy inference engines are used: single-input fuzzy inference engine (SIFIE) and preferential fuzzy inference engine (PFIE). SIFIE has only one input which means a separate SIFIE is assigned to each state variable, and on the other side, PFIE represents the control priority order of each state variable. Consequently, control gains of FPID controller will be adjusted and updated with a sliding mode-based adaptation mechanism. As a result, via numerical simulations, objectives of the AFPID controller in terms of faster convergence time and higher performance are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(H\) :

Angular momentum of a rigid body

\(\vec{\omega }\) :

Angular velocity vector of the body

\(h_{q}\) :

Angular momentum of the body related to \(q\)-axis

\(h_{w}\) :

Momentum wheel’s nominal torque

\(K_{{\left( {d,q} \right)}}\) :

Derivative gain related to \(q\)-axis

\(K_{{\left( {p,rq} \right)}}\), \(K_{{\left( {d,rq} \right)}}\), \(K_{{\left( {i,rq} \right)}}\) :

Regulation variables

\(\hat{K}_{{\left( {p,q} \right)}}\), \(\hat{K}_{{\left( {d,q} \right)}}\), \(\hat{K}_{{\left( {i,q} \right)}}\) :

Dynamic influence level

\(\Delta W_{{\left( {p,q} \right)}}\), \(\Delta W_{{\left( {d,q} \right)}}\), \(\Delta W_{{\left( {i,q} \right)}}\) :

Fuzzy variables obtained by PFIE

\(T_{{\left( {{\text{FPID}},q} \right)}}\) :

FPID control action in \(q\)-axis

\(x_{\text{ds}}\) :

Designed signal

\(R_{{\left( {i,j} \right)}}\) :

jth rule in the SIFIE-i

\(A_{{\left( {i,j} \right)}}\) :

Intermediate variable

\(\gamma_{q}\) :

Learning rate related to \(q\)-axis

\(\vec{r}\) :

Location vector of an element inside the body

\(\omega_{q}\) :

Body angular rate related to \(q\)-axis

\(T_{q}\) :

Control input in \(q\)-axis

\(K_{{\left( {p,q} \right)}}\) :

Proportional gain related to \(q\)-axis

\(K_{{\left( {i,q} \right)}}\) :

Integral gain related to \(q\)-axis

\(f_{{\left( {p,q} \right)}}\), \(f_{{\left( {d,q} \right)}}\), \(f_{{\left( {i,q} \right)}}\) :

Fuzzy variables obtained by SIFIE

\(K_{{\left( {p,bq} \right)}}\), \(K_{{\left( {d,bq} \right)}}\), \(K_{{\left( {i,bq} \right)}}\) :

Base variables

\(K_{q}\) :

Gain vector related to \(q\)-axis

\(X_{i}\) :

ith input variable

\(C_{{\left( {i,j} \right)}}\) :

Membership functions of the \(X_{i}\)

\(P_{i}\) :

jth rule of the SIFIE-i

\(P_{i}\) :

jth rule o

\(T_{{\left( {{\text{FLC}},q} \right)}}\) :

Feedback linearization controller in \(q\)-axis

References

  1. Åström, K.J., Hägglund, T., Astrom, K.J.: Advanced PID control 76–78 (2006)

  2. Wang, L., Barnes, T.J.D., Cluett, W.R.: New frequency-domain design method for PID controllers. IEE Proc. Control Theory Appl. 142, 265–271 (1995)

    Article  MATH  Google Scholar 

  3. Ang, K.H., Chong, G., Li, Y.: PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 13, 559–576 (2005)

    Article  Google Scholar 

  4. Can, M.S., Ozguven, O.F.: PID tuning with neutrosophic similarity measure. Int. J. Fuzzy Syst. 19, 489–503 (2017)

    Article  MathSciNet  Google Scholar 

  5. Passino, K.M.: Intelligent control for autonomous systems. IEEE Spectr. 32, 55–62 (1995)

    Article  Google Scholar 

  6. Arpaci, H., Ozguven, O.F.: Design of adaptive fractional-order PID controller to enhance robustness by means of adaptive network fuzzy inference system. Int. J. Fuzzy Syst. 19, 1118–1131 (2017)

    Article  MathSciNet  Google Scholar 

  7. Chen, S.-Y., Hung, Y.-H., Gong, S.-S.: Speed control of vane-type air motor servo system using proportional-integral-derivative-based fuzzy neural network. Int. J. Fuzzy Syst. 18, 1065–1079 (2016)

    Article  MathSciNet  Google Scholar 

  8. Kuswadi, S.: Review on intelligent control: its historical perspective and future development. IECI Jpn. Ser. 3, 38–46 (2001)

    Google Scholar 

  9. Yeh, J.-W., Su, S.-F.: Efficient approach for RLS type learning in TSK neural fuzzy systems. IEEE Trans. Cybern. 47, 2343–2352 (2017)

    Article  Google Scholar 

  10. Tsai, C.-C., Tai, F.-C., Chang, Y.-L., Tsai, C.-T.: Adaptive predictive PID control using fuzzy wavelet neural networks for nonlinear discrete-time time-delay systems. Int. J. Fuzzy Syst. 19, 1718–1730 (2017)

    Article  MathSciNet  Google Scholar 

  11. Tanaka, T., Murai, T., Kudo, Y., Akama, S.: Empty-stringizing of the false value in crisp and fuzzy granular hierarchical structures. In: 15th International Symposium on Soft Computing and Intelligent Systems (SCIS), 2014 Joint 7th International Conference on and Advanced Intelligent Systems (ISIS), pp. 993–997. IEEE (2014)

  12. Murai, T., Miyamoto, S., Inuiguchi, M., Kudo, Y., Akama, S.: Crisp and fuzzy granular hierarchical structures generated from a free monoid. J. Adv. Comput. Intell. Intell. Inform. 18, 929–936 (2014)

    Article  Google Scholar 

  13. Li, X., Choi, B.-J.: Design of Adaptive Network-Based Fuzzy Inference System for Obstacle Avoidance of Mobile Robot. Soft Computing in Advanced Robotics, pp. 83–90. Springer, Cham (2014)

    Google Scholar 

  14. Tsai, C.-C., Chan, C.-C., Tai, F.-C.: Cooperative localization using fuzzy decentralized extended information filtering for homogenous omnidirectional mobile multi-robot system. In: ICSSE, pp 343–357 (2015)

  15. Bae, Y.: Analysis of nonlinear behavior in love model as external force with Gaussian fuzzy membership function. Korean Inst. Intell. Syst. 27, 29–34 (2017)

    Article  Google Scholar 

  16. Huang, L., Bae, Y.: Nonlinear Behavior in Romeo and Juliet’s love model influenced by external force with fuzzy membership function. Int. J. Fuzzy Syst. 19, 1670–1682 (2017)

    Article  MathSciNet  Google Scholar 

  17. Tsai, C., Wang, Z., Lee, C., Li, Y.: Intelligent adaptive trajectory tracking control for an autonomous small-scale helicopter using fuzzy basis function networks. Asian J Control 17, 234–245 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yoo, H., Choi, B.-J.: Design of vectored sum defuzzification based fuzzy logic systems for position control of a quad-copter. Adv. Sci. Lett. 23, 9702–9705 (2017)

    Article  Google Scholar 

  19. Precup, R.-E., Rădac, M.-B., Tomescu, M.L., Petriu, E.M., Preitl, S.: Stable and convergent iterative feedback tuning of fuzzy controllers for discrete-time SISO systems. Expert Syst. Appl. 40, 188–199 (2013)

    Article  Google Scholar 

  20. Zhang, J., Zhang, Y., Xu, C.: Backing up a truck on Gaussian and non-Gaussian impulsive noise with extended Kalman filter and fuzzy controller. Int. J. Fuzzy Syst. 20, 791–802 (2018)

    Article  MathSciNet  Google Scholar 

  21. Yoo, H.-H., Choi, B.-J.: Design of vectored sum-based fuzzy logic control system and its application to Segway-type mobile robot. Int. J. Humanoid Robot. 14, 1750003 (2017)

    Article  Google Scholar 

  22. Tsai, C.-C., Hsieh, S.-M., Chen, C.-T.: Fuzzy longitudinal controller design and experimentation for adaptive cruise control and stop&go. J. Intell. Robot. Syst. 59, 167–189 (2010)

    Article  MATH  Google Scholar 

  23. Woo, Z.-W., Chung, H.-Y., Lin, J.-J.: A PID type fuzzy controller with self-tuning scaling factors. Fuzzy Sets Syst. 115, 321–326 (2000)

    Article  MATH  Google Scholar 

  24. Driankov, D., Hellendoorn, H., Palm, R.: Some Research Directions in Fuzzy Control. Theoretical Aspects of Fuzzy Control, pp. 281–312. Wiley, New York (1995)

    MATH  Google Scholar 

  25. Chen, G.: Conventional and fuzzy PID controllers: an overview. Int. J. Intell. Control Syst. 1, 235–246 (1996)

    Article  MathSciNet  Google Scholar 

  26. Driankov, D., Hellendoorn, H., Reinfrank, M.: Introduction. An Introduction to Fuzzy Control, pp. 1–36. Springer, Cham (1996)

    Book  MATH  Google Scholar 

  27. Wang, P., Kwok, D.P.: Analysis and synthesis of an intelligent control system based on fuzzy logic and the PID principle. Intell. Syst. Eng. 1, 157–171 (1992)

    Article  Google Scholar 

  28. Boubertakh, H., Tadjine, M., Glorennec, P.-Y., Labiod, S.: Tuning fuzzy PD and PI controllers using reinforcement learning. ISA Trans. 49, 543–551 (2010). https://doi.org/10.1016/j.isatra.2010.05.005

    Article  Google Scholar 

  29. Duan, X.-G., Li, H.-X., Deng, H.: Robustness of fuzzy PID controller due to its inherent saturation. J. Process Control 22, 470–476 (2012)

    Article  Google Scholar 

  30. Karasakal, O., Guzelkaya, M., Eksin, I., Yesil, E., Kumbasar, T.: Online tuning of fuzzy PID controllers via rule weighing based on normalized acceleration. Eng. Appl. Artif. Intell. 26, 184–197 (2013). https://doi.org/10.1016/j.engappai.2012.06.005

    Article  Google Scholar 

  31. Wang, Y., Jin, Q., Zhang, R.: Improved fuzzy PID controller design using predictive functional control structure. ISA Trans. 71, 354–363 (2017)

    Article  Google Scholar 

  32. Kumar, A., Kumar, V.: Evolving an interval type-2 fuzzy PID controller for the redundant robotic manipulator. Expert Syst. Appl. 73, 161–177 (2017)

    Article  Google Scholar 

  33. Haroun, A.H.G., Li, Y.: A novel optimized hybrid fuzzy logic intelligent PID controller for an interconnected multi-area power system with physical constraints and boiler dynamics. ISA Trans. 71, 364–379 (2017)

    Article  Google Scholar 

  34. Baroud, Z., Benmiloud, M., Benalia, A., Ocampo-Martinez, C.: Novel hybrid fuzzy-PID control scheme for air supply in PEM fuel-cell-based systems. Int. J. Hydrogen Energy 42, 10435–10447 (2017)

    Article  Google Scholar 

  35. Kosari, A., Jahanshahi, H., Razavi, S.A.: An optimal fuzzy PID control approach for docking maneuver of two spacecraft: orientational motion. Eng. Sci. Technol. Int. J. 20, 293–309 (2017). https://doi.org/10.1016/j.jestch.2016.07.018

    Article  Google Scholar 

  36. Chak, Y.-C., Varatharajoo, R., Razoumny, Y.: Disturbance observer-based fuzzy control for flexible spacecraft combined attitude & sun tracking system. Acta Astronaut. 133, 302–310 (2017)

    Article  Google Scholar 

  37. Kim, S.-W., Park, S.-Y., Park, C.: Spacecraft attitude control using neuro-fuzzy approximation of the optimal controllers. Adv. Sp. Res. 57, 137–152 (2016)

    Article  Google Scholar 

  38. Cheng, C.-H., Shu, S.-L.: Application of fuzzy controllers for spacecraft attitude control. IEEE Trans. Aerosp. Electron. Syst. 45, 761–765 (2009)

    Article  Google Scholar 

  39. Calvo, D., Avilés, T., Lapuerta, V., Laverón-Simavilla, A.: Fuzzy attitude control for a nanosatellite in low Earth orbit. Expert Syst. Appl. 58, 102–118 (2016)

    Article  Google Scholar 

  40. Chen, Z., Zhong, L., Liu, X., Cong, B.: Adaptive fuzzy pd + control for attitude maneuver of rigid spacecraft. Asian J Control 18, 631–641 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yi, J., Yubazaki, N., Hirota, K.: A new fuzzy controller for stabilization of parallel-type double inverted pendulum system. Fuzzy Sets Syst. 126, 105–119 (2002). https://doi.org/10.1016/S0165-0114(01)00028-8

    Article  MathSciNet  MATH  Google Scholar 

  42. Zadeh, H.S., Wood, L.A.: Heuristic optimisation of a vibration suppression controller. In: Engineering Solutions for the Next Millennium. 1999 IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.99TH8411), vol. 2, pp. 1024–1028 (1999). https://doi.org/10.1109/ccece.1999.808187

  43. Nam, S.K., Zhang, R.W.: Fuzzy multi-variable control for attitude stabilization of flexible spacecraft. In: IEEE International Conference on Intelligent Processing Systems, pp. 257–261 (1997). https://doi.org/10.1109/icips.1997.672777

  44. Nam, S.K., Kim, K.K.: Fuzzy control based on H ; output feedback for attitude stabilization of flexible satellite. In: 10th IEEE International Conference on Fuzzy System (Cat No01CH37297), vol. 1, pp. 159–162 (2001). https://doi.org/10.1109/fuzz.2001.1007271

  45. Van Buijtenen, W.M., Schram, G., Babuska, R., Verbruggen, H.B.: Adaptive fuzzy control of satellite attitude by reinforcement learning. IEEE Trans. Fuzzy Syst. 6, 185–194 (1998)

    Article  Google Scholar 

  46. Park, Y.-M., Choi, M.-S., Lee, K.Y.: An optimal tracking neuro-controller for nonlinear dynamic systems. IEEE Trans. Neural Netw. 7, 1099–1110 (1996). https://doi.org/10.1109/72.536307

    Article  Google Scholar 

  47. Tsay, D.-L., Chung, H.-Y., Lee, C.-J.: The adaptive control of nonlinear systems using the Sugeno-type of fuzzy logic. IEEE Trans. Fuzzy Syst. 7, 225–229 (1999). https://doi.org/10.1109/91.755402

    Article  Google Scholar 

  48. Kwan, C., Xu, H., Xu, H.: Robust spacecraft attitude control using adaptive fuzzy logic. Int. J. Syst. Sci. 31, 1217–1225 (2000)

    Article  MATH  Google Scholar 

  49. Zhang, C., Wang, J., Zhang, D., Shao, X.: Synchronization and tracking of multi-spacecraft formation attitude control using adaptive sliding mode. Asian J. Control (2018). https://doi.org/10.1002/asjc.1775

  50. Tiwari, P.M., Janardhanan, S., un-Nabi, M.: Spacecraft anti-unwinding attitude control using second-order sliding mode. Asian J. Control 20, 455–468 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Xiong, K., Wei, C.: Adaptive iterated extended KALMAN filter for relative spacecraft attitude and position estimation. Asian J. Control 20, 1595–1610 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sun, L., Huo, W.: Robust adaptive control of spacecraft proximity maneuvers under dynamic coupling and uncertainty. Adv. Sp. Res. 56, 2206–2217 (2015)

    Article  Google Scholar 

  53. Xiao, B., Hu, Q., Zhang, Y.: Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation. IEEE Trans. Control Syst. Technol. 20, 1605–1612 (2012)

    Article  Google Scholar 

  54. Luo, W., Chu, Y.-C., Ling, K.-V.: Inverse optimal adaptive control for attitude tracking of spacecraft. IEEE Trans. Automat. Control 50, 1639–1654 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Cai, W., Liao, X., Song, D.Y.: Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft. J. Guid. Control Dyn. 31, 1456–1463 (2008)

    Article  Google Scholar 

  56. Jahanshahi, H., Sari, N.N., Pham, V.-T., Alsaadi, F.E., Hayat, T.: Optimal adaptive higher order controllers subject to sliding modes for a carrier system. Int. J. Adv. Robot. Syst. 15, 1729881418782097 (2018). https://doi.org/10.1177/1729881418782097

    Article  Google Scholar 

  57. Li, Y., Xu, Q.: Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator. IEEE Trans. Control Syst. Technol. 18, 798–810 (2010)

    Article  Google Scholar 

  58. Peng, J.Y., Chen, X.B.: Integrated PID-based sliding mode state estimation and control for piezoelectric actuators. IEEE/ASME Trans Mech. 19, 88–99 (2014)

    Article  Google Scholar 

  59. Kosari, A., Jahanshahi, H., Razavi, A.: Optimal FPID control approach for a docking maneuver of two spacecraft: translational motion. J. Aerosp. Eng. 30, 4017011 (2017). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000720

    Article  Google Scholar 

  60. Dounis, A.I., Kofinas, P., Alafodimos, C., Tseles, D.: Adaptive fuzzy gain scheduling PID controller for maximum power point tracking of photovoltaic system. Renew. Energy 60, 202–214 (2013)

    Article  Google Scholar 

  61. Su, S.-F,, Wang, K.-J., Chen, M.-C., Rudas, I.J., Tsai, C.-C.: Adaptive PD fuzzy control with dynamic learning rate for two-wheeled balancing six degrees of freedom robotic arm. In: 2015 IEEE International Conference on Automation Science and Engineering (CASE), pp. 1258–61. IEEE (2015)

  62. Khanesar, M.A., Kaynak, O., Yin, S., Gao, H.: Adaptive indirect fuzzy sliding mode controller for networked control systems subject to time-varying network-induced time delay. IEEE Trans. Fuzzy Syst. 23, 205–214 (2015)

    Article  Google Scholar 

  63. Guan, P., Liu, X.-J., Liu, J.-Z.: Adaptive fuzzy sliding mode control for flexible satellite. Eng. Appl. Artif. Intell. 18, 451–459 (2005)

    Article  Google Scholar 

  64. Gao, Q., Liu, J., Tian, T., Li, Y.: Free-flying dynamics and control of an astronaut assistant robot based on fuzzy sliding mode algorithm. Acta Astronaut. 138, 462–474 (2017)

    Article  Google Scholar 

  65. Zeghlache, S., Benslimane, T., Amardjia, N., Bouguerra, A.: Interval type-2 fuzzy sliding mode controller based on nonlinear observer for a 3-DOF helicopter with uncertainties. Int. J. Fuzzy Syst. 19, 1444–1463 (2017)

    Article  MathSciNet  Google Scholar 

  66. Su, S.-F., Hsueh, Y.-C., Tseng, C.-P., Chen, S.-S., Lin, Y.-S.: Direct adaptive fuzzy sliding mode control for under-actuated uncertain systems. Int. J. Fuzzy Log Intell. Syst. 15, 240–250 (2015)

    Article  Google Scholar 

  67. Chang, W.-D., Yan, J.-J.: Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems. Chaos Solitons Fractals 26, 167–175 (2005). https://doi.org/10.1016/j.chaos.2004.12.013

    Article  MATH  Google Scholar 

  68. Yi, J., Yubazaki, N.: Stabilization fuzzy control of inverted pendulum systems. Artif. Intell. Eng. 14, 153–163 (2000). https://doi.org/10.1016/S0954-1810(00)00007-8

    Article  Google Scholar 

  69. Wang, L.-X.: A Course in Fuzzy Systems. Prentice-Hall press, USA (1999)

    Google Scholar 

  70. De Souza, L.C.G.: Design of satellite control system using optimal nonlinear theory. Mech. Based Des. Struct. Mach. 34, 351–364 (2006)

    Article  Google Scholar 

  71. Sidi, M.J.: Spacecraft Dynamics and Control: A Practical Engineering Approach, vol. 7. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  72. Walker, A.R., Putman, P.T., Cohen, K.: Solely magnetic genetic/fuzzy-attitude-control algorithm for a CubeSat. J. Spacecr. Rockets 52, 1627–1639 (2015)

    Article  Google Scholar 

  73. Nagi, F., Zulkarnain, A.T., Nagi, J.: Tuning fuzzy bang–bang relay controller for satellite attitude control system. Aerosp. Sci. Technol. 26, 76–86 (2013)

    Article  Google Scholar 

  74. Cheng, C.-H., Shu, S.-L., Cheng, P.-J.: Attitude control of a satellite using fuzzy controllers. Expert Syst. Appl. 36, 6613–6620 (2009)

    Article  Google Scholar 

  75. Moradi, M.: Self-tuning PID controller to three-axis stabilization of a satellite with unknown parameters. Int. J. Non Linear Mech. 49, 50–56 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Fakoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafizadeh Sari, N., Jahanshahi, H. & Fakoor, M. Adaptive Fuzzy PID Control Strategy for Spacecraft Attitude Control. Int. J. Fuzzy Syst. 21, 769–781 (2019). https://doi.org/10.1007/s40815-018-0576-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0576-2

Keywords

Navigation