Skip to main content
Log in

A New Failure-Censored Reliability Test Using Neutrosophic Statistical Interval Method

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The failure-censored reliability tests available in the literature are applied when under the assumption that all failure data/observations are precise, clear and determinate. But, in practice, when the variable failure data/observations obtained from the measurement process are not precise, clear and determinate, the failure-censored reliability tests using classical statistics cannot be applied for the reliability testing. A more generalized form of the classical statistics is known as neutrosophic statistics which can be applied when the measurable failure data/observations are indeterminate, unclear, incomplete and vague. In this manuscript, we will originally design failure-censored reliability tests using the neutrosophic fuzzy approach. The neutrosophic plan parameters of the proposed neutrosophic fuzzy failure-censored reliability plan assume that the failure time follows the neutrosophic Weibull distribution. The neutrosophic fuzzy optimization problem is used to determine the neutrosophic plan parameters for given producer’s risk and consumer’s risk. Some tables are given for the practical use and exampled with the help of an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fertig, K., Mann, N.R.: Life-test sampling plans for two-parameter Weibull populations. Technometrics 22(2), 165–177 (1980)

    Article  MATH  Google Scholar 

  2. Jun, C.-H., Balamurali, S., Lee, S.-H.: Variables sampling plans for Weibull distributed lifetimes under sudden death testing. IEEE Trans. Reliab. 55(1), 53–58 (2006)

    Article  Google Scholar 

  3. Kantam, R., Srinivasa Rao, G., Sriram, B.: An economic reliability test plan: log-logistic distribution. J. Appl. Stat. 33(3), 291–296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Tsai, T.-R., Wu, S.-J.: Acceptance sampling based on truncated life tests for generalized Rayleigh distribution. J. Appl. Stat. 33(6), 595–600 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Huang, S.-R., Wu, S.-J.: Reliability sampling plans under progressive type-I interval censoring using cost functions. IEEE Trans. Reliab. 57(3), 445–451 (2008)

    Article  Google Scholar 

  6. Pérez-González, C.J., Fernández, A.J.: Accuracy of approximate progressively censored reliability sampling plans for exponential models. Stat. Pap. 50(1), 161–170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aslam, M., Jun, C.-H.: A group acceptance sampling plan for truncated life test having Weibull distribution. J. Appl. Stat. 36(9), 1021–1027 (2009)

    Article  MathSciNet  Google Scholar 

  8. Wu, S.-J., Huang, S.-R.: Progressively first-failure censored reliability sampling plans with cost constraint. Comput. Stat. Data Anal. 56(6), 2018–2030 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Aslam, M., Jun, C.-H., Arshad, A.: SkSP-V sampling plan for accelerated life tests. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 229(3), 193–199 (2015)

    Google Scholar 

  10. Aslam, M., Azam, M., Jun, C.-H.: Acceptance sampling plans for multi-stage process based on time-truncated test for Weibull distribution. Int. J. Adv. Manuf. Technol. 79(9–12), 1779–1785 (2015)

    Article  Google Scholar 

  11. EL-Sagheer, R.M.: Inferences in constant-partially accelerated life tests based on progressive type-II censoring. Bull. Malays. Math. Sci. Soc. 41(2), 609–626 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Singh, S., Tripathi, Y.M.: Estimating the parameters of an inverse Weibull distribution under progressive type-I interval censoring. Stat. Pap. 59(1), 21–56 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Aslam, M., et al.: A new variables sampling plan for life testing in a continuous process under Weibull distribution. Pak. J. Stat. 26(3), 539–546 (2010)

    MathSciNet  Google Scholar 

  14. Kanagawa, A., Ohta, H.: A design for single sampling attribute plan based on fuzzy sets theory. Fuzzy Sets Syst. 37(2), 173–181 (1990)

    Article  MathSciNet  Google Scholar 

  15. Tamaki, F., Kanagawa, A., Ohta, H.: A fuzzy design of sampling inspection plans by attributes (Journal of Japan Society for Fuzzy Theory and Systems). 日本ファジィ学会誌 3(4), 211–212 (1991)

    Google Scholar 

  16. Cheng, S.-R., Hsu, B.-M., Shu, M.-H.: Fuzzy testing and selecting better processes performance. Ind. Manag. Data Syst. 107(6), 862–881 (2007)

    Article  Google Scholar 

  17. Zarandi, M., Alaeddini, A., Turksen, I.: A hybrid fuzzy adaptive sampling—run rules for Shewhart control charts. Inf. Sci. 178(4), 1152–1170 (2008)

    Article  Google Scholar 

  18. Viertl, R.: On reliability estimation based on fuzzy lifetime data. J. Stat. Plan. Inference 139(5), 1750–1755 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Alaeddini, A., Ghazanfari, M., Nayeri, M.A.: A hybrid fuzzy-statistical clustering approach for estimating the time of changes in fixed and variable sampling control charts. Inf. Sci. 179(11), 1769–1784 (2009)

    Article  Google Scholar 

  20. Sadeghpour Gildeh, B., Baloui Jamkhaneh, E., Yari, G.: Acceptance single sampling plan with fuzzy parameter. Iran. J. Fuzzy Syst. 8(2), 47–55 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Jamkhaneh, E.B., Sadeghpour-Gildeh, B., Yari, G.: Inspection error and its effects on single sampling plans with fuzzy parameters. Struct. Multidiscip. Optim. 43(4), 555–560 (2011)

    Article  MATH  Google Scholar 

  22. Divya, P.: Quality interval acceptance single sampling plan with fuzzy parameter using poisson distribution. Int. J. Adv. Res. Technol. 1(3), 115–125 (2012)

    Google Scholar 

  23. Jamkhaneh, E.B., Gildeh, B.S.: Acceptance double sampling plan using fuzzy poisson distribution. World. Appl. Sci. J. 16(11), 1578–1588 (2012)

    Google Scholar 

  24. Turanoğlu, E., Kaya, İ., Kahraman, C.: Fuzzy acceptance sampling and characteristic curves. Int. J. Comput. Intell. Syst. 5(1), 13–29 (2012)

    Article  Google Scholar 

  25. Jamkhaneh, E.B., Gildeh, B.S.: Sequential sampling plan using fuzzy SPRT. J. Intell. Fuzzy Syst. 25(3), 785–791 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Venkateh, A., Elango, S.: Acceptance sampling for the influence of TRH using crisp and fuzzy gamma distribution. Aryabhatta J. Math. Inform. 6(1), 119–124 (2014)

    Google Scholar 

  27. Afshari, R., Gildeh, B.S.: Construction of fuzzy multiple deferred state sampling plan. In: Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS), 2017 Joint 17th World Congress of International. IEEE (2017)

  28. Afshari, R., Gildeh, B.S., Sarmad, M.: Multiple deferred state sampling plan with fuzzy parameter. Int. J. Fuzzy Syst. 33, 1–9 (2017)

    MATH  Google Scholar 

  29. Afshari, R., Sadeghpour Gildeh, B., Sarmad, M.: Fuzzy multiple deferred state attribute sampling plan in the presence of inspection errors. J. Intell. Fuzzy Syst. 33(1), 503–514 (2017)

    Article  MATH  Google Scholar 

  30. Elango, S., Venkatesh, A., Sivakumar, G.: A fuzzy mathematical analysis for the effect of TRH using acceptance sampling plans. Int. J. Pure. Appl. Math. 117(5), 1–11 (2017)

    Google Scholar 

  31. Wang, Y., et al.: Fuzzy-model-based sliding mode control of nonlinear descriptor systems. IEEE Trans. Cybern. 99, 1–11 (2018)

    Google Scholar 

  32. Wang, Y., et al.: An improved result on exponential stabilization of sampled-data fuzzy systems. IEEE Trans. Fuzzy Syst. 26, 6–18 (2018)

    Article  Google Scholar 

  33. Wang, Y., et al.: Dissipativity-based fuzzy integral sliding mode control of continuous-time TS fuzzy systems. IEEE Trans. Fuzzy Syst. 26(3), 1164–1176 (2018)

    Article  Google Scholar 

  34. Smarandache, F.: Neutrosophic logic—a generalization of the intuitionistic fuzzy logic. In: Multispace & Multistructure. Neutrosophic Transdisciplinarity (100 Collected Papers of Science), vol. 4, p. 396 (2010)

  35. Smarandache, F.: Introduction to neutrosophic statistics. Infinite Study, New York (2014)

    MATH  Google Scholar 

  36. Chen, J., Ye, J., Du, S.: Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics. Symmetry 9(10), 208 (2017)

    Article  Google Scholar 

  37. Chen, J., et al.: Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers. Symmetry 9(7), 123 (2017)

    Article  Google Scholar 

  38. Smarandache, F., Vlădăreanu, L.: Applications of neutrosophic logic to robotics. Trickle Up Eff. (2013). http://fs.unm.edu/Neutro-ApplicationsRobot.pdf

  39. Aslam, M.: A new sampling plan using neutrosophic process loss consideration. Symmetry 10(5), 132 (2018)

    Article  MathSciNet  Google Scholar 

  40. Aslam, M., Raza, M.A.: Design of new sampling plans for multiple manufacturing lines under uncertainty. Int. J. Fuzzy Syst. 38, 1–15 (2018)

    Google Scholar 

  41. Aslam, M., Arif, O.: Testing of grouped product for the Weibull distribution using neutrosophic statistics. Symmetry 10(9), 403 (2018)

    Article  Google Scholar 

  42. Schneider, H.: Failure-censored variables-sampling plans for lognormal and Weibull distributions. Technometrics 31(2), 199–206 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

The author is deeply thankful to the editor and the reviewers for their valuable suggestions to improve the quality of this manuscript. This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (D-045-130-1440). The author, therefore, gratefully acknowledge the DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Aslam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, M. A New Failure-Censored Reliability Test Using Neutrosophic Statistical Interval Method. Int. J. Fuzzy Syst. 21, 1214–1220 (2019). https://doi.org/10.1007/s40815-018-0588-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0588-y

Keywords

Navigation