Skip to main content

Advertisement

Log in

The Fruit Fly Optimization Algorithms for Patient-Centered Care Based on Interval Trapezoidal Type-2 Fuzzy Numbers

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Patient-centered care is an important part of the integrative medicine that places the patient at the center of the delivery of treatment, improves the efficiency of care and responds the patient’s needs and preferences. However, the weighting approach for patient-centered group decision making has merely studied the consistency of decision makers (DMs) and group decision. In this study, we aim to develop the fruit fly optimization algorithm (FOA) under the interval trapezoidal type-2 fuzzy numbers (ITrT2FNs). By lowering the deviation distance between each DM’s decision matrix and the group matrix, the optimal weight of DMs can be obtained. Then a novel patient-centered group decision-making model based on the ITrT2FNs and the multi-attributive border approximation area comparison (MABAC) method is proposed. Moreover, the entropy weight method is developed to determine the criteria weights. Finally, the new model is applied to address the realistic breast cancer treatment selection problem, and a comparative analysis is implemented to verify the flexibility and rationality of the extended FOA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Coulter, A.: The autonomous patient: ending paternalism in medical care. Lond. Nuffield Trust 3(6), 37–55 (2002)

    Google Scholar 

  2. Pelzang, R.: Time to learn: understanding patient-centred care. Br. J. Nurs. 19(14), 912 (2010)

    Article  Google Scholar 

  3. Redman, R.W.: Patient-centered care: an unattainable ideal? Res. Theory Nurs. Pract. 18(1), 11 (2004)

    Article  Google Scholar 

  4. Mccormack, B., Mccance, T.: Development of a framework for person-centred nursing. J. Adv. Nurs. 56(5), 472–479 (2006)

    Article  Google Scholar 

  5. Steiger, N.J., Balog, A.: Realizing patient-centered care: putting patients in the center, not the middle. Front. Health Serv. Manag. 26(4), 15 (2010)

    Article  Google Scholar 

  6. Chen, T.Y.: Collaborative decision-making method for patient-centered care based on interval type-2 fuzzy sets. J. Chin. Inst. Ind. Eng. 29(7), 494–513 (2012)

    Google Scholar 

  7. Lee, Y.Y., Lin, J.L.: Do patient autonomy preferences matter? Linking patient-centered care to patient-physician relationships and health outcomes. Soc. Sci. Med. 71(10), 1811–1818 (2010)

    Article  Google Scholar 

  8. Hu, J., Pan, L., Yang, Y., Chen, H.: A group medical diagnosis model based on intuitionistic fuzzy soft sets. Appl. Soft Comput. 77, 453–466 (2019)

    Article  Google Scholar 

  9. Yang, Y., Hu, J., Sun, R., Chen, X.: Medical tourism estinations prioritization using group decision making method with neutrosophic fuzzy preference relations. Sci. Iran. Trans. E Ind. Eng. 25(6), 3744–3764 (2018)

    Google Scholar 

  10. Yang, Y., Hu, J., Liu, Y., Chen, X.: Doctor recommendation based on an intuitionistic normal cloud model considering patient preferences. Cognit. Comput. (2018). https://doi.org/10.1007/s12559-018-9616-3

    Article  Google Scholar 

  11. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—II. Inf. Sci. 8(4), 301–357 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Herrera, F., Herrera-Viedma, E., Verdegay, J.L.: A linguistic decision process in group decision making. Group Decis. Negot. 5(2), 165–176 (1996)

    Article  MATH  Google Scholar 

  13. Pang, J., Liang, J.: Evaluation of the results of multi-attribute group decision-making with linguistic information. Omega 40(3), 294–301 (2012)

    Article  Google Scholar 

  14. Liu, P., Chen, S.M.: Multiattribute group decision making based on intuitionistic 2-tuple linguistic information. Inf. Sci. 430–431, 599–619 (2018)

    Article  MathSciNet  Google Scholar 

  15. Mendel, J.M.: A comparison of three approaches for estimating (synthesizing) an interval type-2 fuzzy set model of a linguistic term for computing with words. Granul. Comput. 1(1), 59–69 (2016)

    Article  Google Scholar 

  16. Zhang, X.Y., Zhang, H.Y., Wang, J.Q.: Discussing incomplete 2-tuple fuzzy linguistic preference relations in multi-granular linguistic MCGDM with unknown weight information. Soft. Comput. 20(3), 958–969 (2017). https://doi.org/10.1007/s00500-017-2915-x

    Article  MATH  Google Scholar 

  17. Pei, Z., Zheng, L.: New unbalanced linguistic scale sets: the linguistic information representations and applications. Comput. Ind. Eng. 105, 377–390 (2017)

    Article  Google Scholar 

  18. Zhang, Z., Zhou, Q., Wu, C., Li, H.: Dissipativity-based reliable interval type-2 fuzzy filter design for uncertain nonlinear systems. Int. J. Fuzzy Syst. 20(2), 390–402 (2018)

    Article  MathSciNet  Google Scholar 

  19. Tellez-Velazquez, A., Molina-Lozano, H., Villa-Vargas, L.A., Cruz-Barbosa, R., Lugo-Gonzalez, E., Batyrshin, I.Z., Rudas, I.J.: A feasible genetic optimization strategy for parametric interval type-2 fuzzy logic systems. Int. J. Fuzzy Syst. 20(1), 318–338 (2018)

    Article  Google Scholar 

  20. Hu, J., Chen, P., Yang, Y.: An interval type-2 fuzzy similarity-based MABAC approach for patient-centered care. Mathematics 7(2), 140 (2019). https://doi.org/10.3390/math7020140

    Article  Google Scholar 

  21. Chen, S.M., Yang, M.W., Lee, L.W., Yang, S.W.: Fuzzy multiple attributes group decision-making based on ranking interval type-2 fuzzy sets. Expert Syst. Appl. Int. J. 44(12), 1665–1673 (2017)

    Google Scholar 

  22. Mendel, J.M.: Computing with words and its relationships with fuzzistics. Inf. Sci. 177(4), 988–1006 (2007)

    Article  MathSciNet  Google Scholar 

  23. Mendel, J.M., Wu, H.: Type-2 fuzzistics for symmetric interval type-2 fuzzy sets: part 1, forward problems. IEEE Trans. Fuzzy Syst. 14(6), 781–792 (2006)

    Article  Google Scholar 

  24. Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)

    Article  Google Scholar 

  25. Dijkman, J.G., Haeringen, H.V., Lange, S.J.D.: Fuzzy numbers. J. Math. Anal. Appl. 92(2), 301–341 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Greenfield, S., Chiclana, F., Coupland, S., John, R.: The collapsing method of defuzzification for discretised interval type-2 fuzzy sets. Inf. Sci. 179(13), 2055–2069 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sinha, B., Das, A., Bera, U.K.: Profit maximization solid transportation problem with trapezoidal interval type-2 fuzzy numbers. Int. J. Appl. Comput. Math. 2(1), 41–56 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Abdullah, L., Zulkifli, N.: Integration of fuzzy AHP and interval type-2 fuzzy DEMATEL: an application to human resource management. Expert Syst. Appl. 42(9), 4397–4409 (2015)

    Article  Google Scholar 

  29. Wu, D., Mendel, J.M.: A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets. Inf. Sci. 179(8), 1169–1192 (2009)

    Article  MathSciNet  Google Scholar 

  30. Whelan, M.E., Goode, A.D., Hickman, I.J., Eakin, E.G., Reeves, M.M.: Telephone-delivered weight management services in the hospital outpatient setting: decision-makers’ perceptions of their use in routine practice. Nutr. Diet. 74(3), 261–267 (2017)

    Article  Google Scholar 

  31. Yue, Z.: An extended TOPSIS for determining weights of decision makers with interval numbers. Knowl. Based Syst. 24(1), 146–153 (2011)

    Article  Google Scholar 

  32. Honert, R.C.V.D.: Decisional power in group decision making: a note on the allocation of group members’ weights in the multiplicative AHP and SMART. Group Decis. Negot. 10(3), 275–286 (2001)

    Article  Google Scholar 

  33. Onar, S.C., Oztaysi, B., Kahraman, C.: Strategic decision selection using hesitant fuzzy TOPSIS and interval type-2 fuzzy AHP: a case study. Int. J. Comput. Intell. Syst. 7(5), 1002–1021 (2014)

    Article  Google Scholar 

  34. Zhou, Y.N., Zhu, Y.A.: Algorithm for adjusting weights of decision-makers in multi-attribute group decision-making based on grey system theory. Control Decis. 27(7), 1113–1116 (2012)

    MathSciNet  Google Scholar 

  35. Liu, H.C., You, J.X., Duan, C.Y.: An integrated approach for failure mode and effect analysis under interval-valued intuitionistic fuzzy environment. Int. J. Prod. Econ. (2017). https://doi.org/10.1016/j.ijpe.2017.03.008

    Article  Google Scholar 

  36. Yue, Z.: Extension of TOPSIS to determine weight of decision maker for group decision making problems with uncertain information. Expert Syst. Appl. 39(7), 6343–6350 (2012)

    Article  Google Scholar 

  37. Liu, W., Li, L.: An approach to determining the integrated weights of decision makers based on interval number group decision matrices. Knowl. Based Syst. 90(C), 92–98 (2015)

    Article  Google Scholar 

  38. Pan, W.T.: A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl. Based Syst. 26(2), 69–74 (2012)

    Article  Google Scholar 

  39. Xu, W., Deng, X., Li, J.: A new fuzzy portfolio model based on background risk using MCFOA. Int. J. Fuzzy Syst. 17(2), 246–255 (2015)

    Article  MathSciNet  Google Scholar 

  40. Mousavi, S.M., Alikar, N., Niaki, S.T.A.: An improved fruit fly optimization algorithm to solve the homogeneous fuzzy series–parallel redundancy allocation problem under discount strategies. Soft. Comput. 20(6), 2281–2307 (2016)

    Article  Google Scholar 

  41. Hu, R., Wen, S., Zeng, Z., Huang, T.: A short-term power load forecasting model based on the generalized regression neural network with decreasing step fruit fly optimization algorithm. Neurocomputing 221(C), 24–31 (2017)

    Article  Google Scholar 

  42. Wang, Y.J., Lee, H.S.: Generalizing TOPSIS for fuzzy multiple-criteria group decision-making. Comput. Math Appl. 53(11), 1762–1772 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Aksoy, S., Ozbuk, M.Y.: Multiple criteria decision making in hotel location: does it relate to postpurchase consumer evaluations? Tour. Manag. Perspect. 22, 73–81 (2017)

    Article  Google Scholar 

  44. Wang, J., Wang, J.Q., Tian, Z.P., Zhao, D.Y.: A multihesitant fuzzy linguistic multicriteria decision-making approach for logistics outsourcing with incomplete weight information. Int. Trans. Oper. Res. 25(3), 831–856 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yang, Y., Hu, J., Liu, Y., Chen, X.: A multi-period hybrid decision support model for medical diagnosis and treatment based on similarities and three-way decision theory. Expert Syst. (2019). https://doi.org/10.1111/exsy.12377

    Article  Google Scholar 

  46. Chen, T.: The extended QUALIFLEX method for multiple criteria decision analysis based on interval type-2 fuzzy sets and applications to medical decision making. Eur. J. Oper. Res. 226(3), 615–625 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pamucar, D., Cirovic, G.: The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (MABAC). Expert Syst. Appl. 42(6), 3016–3028 (2015)

    Article  Google Scholar 

  48. Hu, J., Zhang, X., Yang, Y., Liu, Y., Chen, X.: New doctors ranking system based on VIKOR method. Int. Trans. Oper. Res. (2018). https://doi.org/10.1111/itor.12569

    Article  Google Scholar 

  49. Liang, P., Hu, J., Liu, Y., Chen, X.: Public resources allocation using an uncertain cooperative game among vulnerable groups. Kybernetes (2018). https://doi.org/10.1108/k-03-2018-0146

    Article  Google Scholar 

  50. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  51. Chen, T.: A linear assignment method for multiple-criteria decision analysis with interval type-2 fuzzy sets. Appl. Soft Comput. J. 13(5), 2735–2748 (2013)

    Article  Google Scholar 

  52. Chen, T.: An ELECTRE-based outranking method for multiple criteria group decision making using interval type-2 fuzzy sets. Inf. Sci. 263(3), 1–21 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Ma, X., Wu, P., Zhou, L., Chen, H., Zheng, T., Ge, J.: Approaches based on interval type-2 fuzzy aggregation operators for multiple attribute group decision making. Int. J. Fuzzy Syst. 18(4), 697–715 (2015)

    Article  MathSciNet  Google Scholar 

  54. Chen, S., Chen, S.: A new method for handling multicriteria fuzzy decision-making problems using FN-IOWA operators. Cybern. Syst. 34(2), 109–137 (2003)

    Article  MATH  Google Scholar 

  55. Abdullah, L., Otheman, A.: A new entropy weight for sub-criteria in interval type-2 fuzzy TOPSIS and its application. Int. J. Intell. Syst. Appl. 5(2), 25–33 (2013)

    Google Scholar 

  56. Wei, G.W.: Extension of TOPSIS method for 2-tuple linguistic multiple attribute group decision making with incomplete weight information. Knowl. Inf. Syst. 25, 623–634 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Numbers 71871229, 71771219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Chen, P., Yang, Y. et al. The Fruit Fly Optimization Algorithms for Patient-Centered Care Based on Interval Trapezoidal Type-2 Fuzzy Numbers. Int. J. Fuzzy Syst. 21, 1270–1287 (2019). https://doi.org/10.1007/s40815-019-00624-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00624-y

Keywords

Navigation