Skip to main content
Log in

Fuzzy Guaranteed Cost \(H\infty\) Control of Uncertain Nonlinear Fuzzy Vehicle Active Suspension with Random Actuator Delay

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper focuses on the fuzzy guaranteed cost \(H\infty\) control problem for uncertain nonlinear vehicle active suspension system with random actuator time delay. Its main contribution to the literature is that a fuzzy guaranteed cost \(H\infty\) controller (FGCHC) is proposed to ensure the resulting closed-loop vehicle active suspension system to be asymptotically stable and guarantee the performance index to be less than a preset upper bound. More specifically, taking the varying masses and the uncertainties caused by random actuator delay into consideration, a discrete-time Takagi-Sugeno fuzzy model for vehicle active suspension is obtained based on an augmented vector, which is without explicit of random actuator delay. By employing the Lyapunov stability theory and the linear matrix inequality (LMI) approach, the existence condition and the design approach for proposed FGCHC are presented. Meanwhile, the computability for proposed FGCHC is guaranteed by solving a corresponding convex optimization problem. By analyzing performance requirements for vehicle active suspension under different simulation scenarios, simulation results demonstrate that the proposed FGCHC can offset the vibration and compensate the varying masses and uncertainties for vehicle active suspension effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tseng, H.E., Hrovat, D.: State of the art survey: active and semi-active suspension control. Veh. Syst. Dynam. 53, 1034–1062 (2015)

    Article  Google Scholar 

  2. Sun, W., Pan, H., Zhang, Y., Gao, H.: Multi-objective control for uncertain nonlinear active suspension systems. Mechatronics 24, 318–327 (2014)

    Article  Google Scholar 

  3. Huang, Y., Nan, J., Wu, X., Gao, G.: Approximation-free control for vehicle active suspensions with hydraulic actuator. IEEE Trans. Ind. Elect. (2018). https://doi.org/10.1109/TIE.2018.2798564

    Google Scholar 

  4. Lian, R.-J.: Enhance adaptive self-organizing fuzzy sliding-mode controller for active suspension systems. IEEE Trans. Ind. Elect. 60, 958–968 (2013)

    Article  Google Scholar 

  5. Nan, J., Huang, Y., Wu, X., Su, S.-F., Li, G.: Adaptive finite-time fuzzy control of nonlinear active suspension systems with input delay. IEEE Trans. Cyber. (2019). https://doi.org/10.1109/TCYB.2019.2894724

    Google Scholar 

  6. Chen, C.L.P., Zhang, T., Chen, L., Tam, S.C.: I-Ching divination evolutionary algorithm and its convergence analysis. IEEE Trans. Cyber. 47(1), 2–13 (2017)

    Article  Google Scholar 

  7. Han, S.-Y., Zhang, C.-H., Tang, G.-Y.: Approximation optimal vibration for networked nonlinear vehicle active suspension with actuator time delay. Asian J. Control 19, 983–995 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, T., Su, G., Qing, C., Xu, X., Cai, B., Xing, X.: Hierarchical Lifelong Learning by Sharing Representations and Integrating Hypothesis. IEEE Trans. Syst. Man Cyber. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2884996

    Google Scholar 

  9. Han, S.-Y., Tang, G.-Y., Chen, Y.-H., Yang, X.-X., Yang, X.: Optimal vibration control for vehicle active suspension discrete-time systems with actuator time delay. Asian J. Control 15(6), 1579–1588 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, T., Chen, C.L.P., Chen, L., Xu, X., Hu, B.: Design of highly nonlinear substitution boxes based on I-Ching operators. IEEE Trans. Cyber. 48(12), 3349–3358 (2018)

    Article  Google Scholar 

  11. Li, H., Jing, X., Lam, H., Shi, P.: Fuzzy sampled-data control for uncertain vehicle suspension systems. IEEE Trans. Cyber. 44(7), 1111–1126 (2014)

    Article  Google Scholar 

  12. Wang, G., Chadli, M., Chen, H., Zhou, Z.: Event-triggered control for active vehicle suspension systems with network-induced delays. J. Frank. Instit. Eng. Appl. Math. 356(1), 147–172 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Meng, Q., Qian, C., Liu, R.: Dual-rate sampled-data stabilization for active suspension system of electric vehicle. Int J Robust Nonlinear Control 28(5), 1610–1623 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cao, J., Li, P., Liu, H.: An interval fuzzy controller for vehicle active suspension systems. IEEE Trans Intell Transp. Syst. 11(4), 885–895 (2010)

    Article  Google Scholar 

  15. Du, H., Zhang, N.: Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint. IEEE Trans. Fuzzy Syst. 17(2), 343–356 (2009)

    Article  Google Scholar 

  16. Li, H., Yu, J., Hilton, C., Liu, H.: Fuzzy control for uncertain vehicle active suspension systems via dynamic sliding-mode approach. IEEE Trans. Syst. Man Cyber. Syst. 47(1), 24–32 (2017)

    Article  Google Scholar 

  17. Li, H., Zhang, Z., Yan, H., Xie, X.: Adaptive event-triggered fuzzy control for uncertain active suspension systems. IEEE Trans. Cyber. (2018). https://doi.org/10.1109/TCYB.2018.2864776

    Google Scholar 

  18. Zhong, X.-F., Han, S.-Y., Zhou, J., Chen, Y.-H.: Design of optimal disturbance attenuation controller for networked T-S fuzzy vehicle active suspension with control delay. Int. J. Fuzzy Syst. 21(2), 676–684 (2019)

    Article  MathSciNet  Google Scholar 

  19. Cao, J., Liu, H., Li, P., Brown, D.J.: State of the art in vehicle active suspension adaptive control systems based on intelligent methodologies. IEEE Trans. Intell. Transp. Syst. 9(3), 392–405 (2008)

    Article  Google Scholar 

  20. Du, H., Zhang, N.: \(H_\infty\) control of active vehicle suspensions with actuator time delay. J. Sound Vibr. 301, 236–252 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ngwangwa, H.M., Heyns, P.S.: Application of an ANN-based methodology for road surface condition identification on mining vehicles and roads. J. Terramech. 53, 59–74 (2014)

    Article  Google Scholar 

  22. Xiao, Z., Jing, X.: Frequency-domain analysis and design of linear feedback of nonlinear systems and applications in vehicle suspensions. IEEE/ASME Trans. Mech. 21, 506–517 (2016)

    Article  Google Scholar 

  23. Han, S.-Y., Chen, Y.-H., Tang, G.-Y.: Fault diagnosis and fault-tolerant tracking control for discrete-time systems with faults and delays in actuator and measurement. J. Frank. Inst. Eng. Appl. Math. 354(12), 4719–4738 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pang, H., Zhang, X., Xu, Z.: Adaptive backstepping-based tracking control design for nonlinear active suspension system with parameter uncertainties and safety constraints. ISA Trans. (2018). https://doi.org/10.1016/j.isatra.2018.11.047

    Google Scholar 

  25. Soliman, H.M., Bajabaa, N.S.: Robust guaranteed-cost control with regional pole placement of active suspensions. J. Vibr. Control 19(8), 1170–1186 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Moradi, S.M., Akbari, A., Mizaei, M.: An offline LMI-based robust model predictive control of vehicle active suspension system with parameter uncertainty. Trans. Inst. Measu. Control 41(6), 1699–1711 (2019)

    Article  Google Scholar 

  27. Ji, H.H., Zhang, H., Cui, B.T.: Finite-dimensional guaranteed cost sampled-data fuzzy control of Markov jump distributed parameter systems via T-S fuzzy model. IET Control Theory Appl. 12(15), 2098–2108 (2018)

    Article  MathSciNet  Google Scholar 

  28. Ye, D., Song, T.T.: Decentralized reliable guaranteed cost control for large-scale nonlinear systems using actor-critic network. Neurocomputing 320, 121–128 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Shandong Provincial Natural Science Foundation (ZR2017MF044, ZR2019MF040), the Shandong Province Key Research and Development Program (2018GGX101016, 2018GGX101048), the Shandong Province Higher Educational Science and Technology Program (J17KA047, J16LN07, J16LB06), the National Natural Science Foundation of China (U1864205, 61873324, 61573166, 61872419), and the Fostering High-Level Research Projects Foundation of Shandong Women’s University (2019GSPSJ07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Fang Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, SY., Zhong, XF., Chen, YH. et al. Fuzzy Guaranteed Cost \(H\infty\) Control of Uncertain Nonlinear Fuzzy Vehicle Active Suspension with Random Actuator Delay. Int. J. Fuzzy Syst. 21, 2021–2031 (2019). https://doi.org/10.1007/s40815-019-00700-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00700-3

Keywords

Navigation