Skip to main content
Log in

High-Speed Interval Type-2 Fuzzy System for Dynamic Crossover Parameter Adaptation in Differential Evolution and Its Application to Controller Optimization

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The main contribution in this paper is the use of a new type-reduction method to improve the processing speed of Type-2 fuzzy systems for dynamic parameter adaptation in the Differential Evolution algorithm. The proposed type-reduction is an approximation to the Continuous Karnik–Mendel (CEK) method, which is the equivalent to using a traditional Interval Type-2 fuzzy system, but with lower computational cost. The motivation of this work is to verify that the proposed methodology is equivalent in performance to an Interval Type-2 fuzzy system. The first type-reduction method was proposed by Karnik and Mendel (KM), and then was followed by its enhanced version called EKM, and the continuous versions were called CKM and CEKM. In addition, there were variations of these and also other types of variations that eliminate the type-reduction process reducing the computational cost to a Type-1 defuzzification. The concept of approximation to the Continuous Karnik–Mendel (CEK) method is new in the area of metaheuristic algorithms and this is why it is in our interest to work with this methodology. We propose to use this methodology to achieve a dynamic crossover (CR) parameter adaptation in the Differential Evolution algorithm, and the objective is to use the type-reduction process and also provide a continuous solution to the defuzzification. This proposed methodology is applied to a set of mathematical functions and a control problem, for verifying the efficiency of the proposed methodology compared to the original algorithm and other existing methods in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Evolutionary computation 1: Basic algorithms and operators. CRC Press, Bristol (2018)

    Google Scholar 

  2. Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach. Pearson Education Limited, Malaysia (2016)

    MATH  Google Scholar 

  3. Pinedo, M., Hadavi, K.: Scheduling: theory, algorithms and systems development. In: Operations Research Proceedings 1991, pp. 35–42. Springer, Berlin, Heidelberg (1992)

  4. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567. (2017)

  5. Mirjalili, S.Z., Saremi, S., Mirjalili, S.M.: Designing evolutionary feedforward neural networks using social spider optimization algorithm. Neural Comput. Appl. 26(8), 1919–1928 (2015)

    Article  Google Scholar 

  6. Greiner, D., Galván, B., Périaux, J., Gauger, N., Giannakoglou, K., Winter, G. (eds.): Advances in evolutionary and deterministic methods for design, optimization and control in engineering and sciences. Springer International Publishing, Basel (2015)

    Google Scholar 

  7. Jain, L.C., Kandel, A., Teodorescu, H.N.L.: Fuzzy and neuro-fuzzy systems in medicine. CRC Press, Bristol (2017)

    Google Scholar 

  8. Miranda, G.H.B., Felipe, J.C.: Computer-aided diagnosis system based on fuzzy logic for breast cancer categorization. Comput. Biol. Med. 64, 334–346 (2015)

    Article  Google Scholar 

  9. Zadeh, L.A., Aliev, R.A.: Fuzzy logic theory and applications: part I and part II. World Scientific Publishing, New Jersey (2018)

    Book  Google Scholar 

  10. De Silva, C.W.: Intelligent control: fuzzy logic applications. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  11. Díaz, I., Ralescu, A.L., Ralescu, D.A., Rodríguez-Muñiz, L.J.: Some results and applications using fuzzy logic in artificial intelligence. In: Gil, E., Gil, J., Gil, M.Á. (eds.) The Mathematics of the Uncertain, pp. 575–584. Springer, Cham (2018)

    Chapter  Google Scholar 

  12. Jalani, J., Jayaraman, S.: Design a fuzzy logic controller for a rotary flexible joint robotic arm. In: MATEC Web of Conferences, vol. 150, p. 01011. EDP Sciences (2018)

  13. Chouhan, A.S., Parhi, D.R., Chhotray, A.: Control and balancing of two-wheeled mobile robots using Sugeno fuzzy logic in the domain of AI techniques. Emerging trends in Engineering, Science and Manufacturing, (ETESM-2018), IGIT, Sarang, India (2018)

  14. Liu, X., Mendel, J.M.: Connect Karnik–Mendel algorithms to root-finding for computing the centroid of an interval type-2 fuzzy set. IEEE Trans. Fuzzy Syst. 19(4), 652–665 (2011)

    Article  Google Scholar 

  15. Zadeh, L.A.: Fuzzy logic—a personal perspective. Fuzzy Sets Syst. 281, 4–20 (2015)

    Article  MathSciNet  Google Scholar 

  16. Vaidyanathan, S., Azar, A.T.: Takagi–Sugeno fuzzy logic controller for Liu–Chen four-scroll chaotic system. Int. J. Intell. Eng. Informat. 4(2), 135–150 (2016)

    Google Scholar 

  17. Trillas, E., Eciolaza, L.: Fuzzy logic, vol. 10, p. 978. Springer International Publishing, Berlin (2015)

    Google Scholar 

  18. Bai, Y., Roth, Z.S.: Fuzzy logic control systems. In: Bai, Y., Roth, Z.S. (eds.) Classical and Modern Controls with Microcontrollers, pp. 437–511. Springer, Cham (2019)

    Chapter  Google Scholar 

  19. Castillo, O., Valdez, F., Soria, J., Amador-Angulo, L., Ochoa, P., Peraza, C.: Comparative study in fuzzy controller optimization using bee colony, differential evolution, and harmony search algorithms. Algorithms 12(1), 9 (2019)

    Article  Google Scholar 

  20. Peraza, C., Valdez, F., Castillo, O.: Improved method based on type-2 fuzzy logic for the adaptive harmony search algorithm. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications, pp. 29–37. Springer, Cham (2018)

    Google Scholar 

  21. Bernal, E., Castillo, O., Soria, J., Valdez, F., Melin, P.: A variant to the dynamic adaptation of parameters in galactic swarm optimization using a fuzzy logic augmentation. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–7. IEEE (2018)

  22. Guzmán, J.C., Melin, P., Prado-Arechiga, G.: Fuzzy optimized classifier for the diagnosis of blood pressure using genetic algorithm. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications, pp. 309–318. Springer, Cham (2018)

    Google Scholar 

  23. Miramontes, I., Guzman, J., Melin, P., Prado-Arechiga, G.: Optimal design of interval type-2 fuzzy heart rate level classification systems using the bird swarm algorithm. Algorithms 11(12), 206 (2018)

    Article  Google Scholar 

  24. Barraza, J., Rodríguez, L., Castillo, O., Melin, P., Valdez, F.: A new hybridization approach between the fireworks algorithm and grey wolf optimizer algorithm. J Optim (2018). https://doi.org/10.1155/2018/6495362

    Article  MathSciNet  MATH  Google Scholar 

  25. Sahoo, D.K., Sahu, R.K., Sekhar, G.C., Panda, S.: A novel modified differential evolution algorithm optimized fuzzy proportional integral derivative controller for load frequency control with thyristor controlled series compensator. J Electr Syst Inf Technol 5(3), 944–963 (2018)

    Article  Google Scholar 

  26. Hong, H., Panahi, M., Shirzadi, A., Ma, T., Liu, J., Zhu, A.X., Ochoa, P., Castillo, O., Soria, J., Kazakis, N.: Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Sci. Total Environ. 621, 1124–1141 (2018)

    Article  Google Scholar 

  27. Ochoa, P., Castillo, O., Soria, J.: Differential evolution algorithm with interval type-2 fuzzy logic for the optimization of the mutation parameter. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications, pp. 55–65. Springer, Cham (2018)

    Google Scholar 

  28. Juang, C.F., Chen, Y.H., Jhan, Y.H.: Wall-following control of a hexapod robot using a data-driven fuzzy controller learned through differential evolution. IEEE Trans. Ind. Electron. 62(1), 611–619 (2015)

    Article  Google Scholar 

  29. Bui, D.T., Nguyen, Q.P., Hoang, N.D., Klempe, H.: A novel fuzzy K-nearest neighbor inference model with differential evolution for spatial prediction of rainfall-induced shallow landslides in a tropical hilly area using GIS. Landslides 14(1), 1–17 (2017)

    Article  Google Scholar 

  30. Chen, W., Panahi, M., Pourghasemi, H.R.: Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. Catena 157, 310–324 (2017)

    Article  Google Scholar 

  31. Marinaki, M., Marinakis, Y., Stavroulakis, G.E.: Fuzzy control optimized by a multi-objective differential evolution algorithm for vibration suppression of smart structures. Comput. Struct. 147, 126–137 (2015)

    Article  Google Scholar 

  32. Ontiveros-Robles, E., Melin, P., Castillo, O.: New methodology to approximate type-reduction based on a continuous root-finding Karnik–Mendel algorithm. Algorithms 10(3), 77 (2017)

    Article  MathSciNet  Google Scholar 

  33. Mendel, J.M., Liu, X.: Simplified interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 21(6), 1056–1069 (2013)

    Article  Google Scholar 

  34. Mendel, J.M.: General type-2 fuzzy logic systems made simple: a tutorial. IEEE Trans. Fuzzy Syst. 22(5), 1162–1182 (2014)

    Article  Google Scholar 

  35. Liu, X.: A survey of continuous Karnik–Mendel algorithms and their generalizations. In: Sadeghian, A., Mendel, J.M., Tahayori, H. (eds.) Advances in Type-2 Fuzzy Sets and Systems, pp. 19–31. Springer, New York (2013)

    Chapter  Google Scholar 

  36. Price, K., Storn, R.M., Lampinen, J.A.: Differential evolution: a practical approach to global optimization. Springer Science & Business Media, Cham (2006)

    MATH  Google Scholar 

  37. Stanovov, V., Akhmedova, S., Semenkin, E.: LSHADE algorithm with rank-based selective pressure strategy for solving CEC 2017 benchmark problems. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE, Rio de Janeiro, Brazil (2018)

  38. Ochoa, P., Castillo, O., Soria, J., Cortes-Antonio, P.: Differential evolution algorithm using a dynamic crossover parameter with high-speed interval type 2 fuzzy system. In: Mexican International Conference on Artificial Intelligence, pp. 369–378. Springer, Cham, Guadalajara, Mexico (2018)

  39. Kadavy, T., Pluhacek, M., Viktorin, A., Senkerik, R.: Comparing boundary control methods for firefly algorithm. In: International Conference on Bioinspired Methods and Their Applications, pp. 163–173. Springer, Cham, Rio de Janeiro, Brazil (2018)

  40. Kumar, A., Misra, R. K., & Singh, D.: Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase. In: Evolutionary Computation (CEC), 2017 IEEE Congress on pp. 1835–1842. IEEE (2017)

  41. Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W.: Type-2 fuzzy logic: theory and applications. In: Granular Computing, 2007. GRC 2007. IEEE International Conference on, p. 145. IEEE (2007)

  42. Hernández-Guzmán, V. M., Silva-Ortigoza, R. Control of a ball and beam system. In: Automatic Control with Experiments, pp. 825–867. Springer, Cham (2019)

  43. Castillo, O., Lizárraga, E., Soria, J., Melin, P., Valdez, F.: New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball and beam system. Inf. Sci. 294, 203–215 (2015)

    Article  MathSciNet  Google Scholar 

  44. Peraza, C., Valdez, F., Castro, J.R., Castillo, O.: Fuzzy dynamic parameter adaptation in the harmony search algorithm for the optimization of the ball and beam controller. Adv. Oper. Res. (2018). https://doi.org/10.1155/2018/3092872

    Article  Google Scholar 

  45. Castillo, O., Amador-Angulo, L., Castro, J.R., Garcia-Valdez, M.: A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inf. Sci. 354, 257–274 (2016)

    Article  Google Scholar 

Download references

Funding

Funding was provided by Consejo Nacional de Ciencia y Tecnología (Grant No. 122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochoa, P., Castillo, O. & Soria, J. High-Speed Interval Type-2 Fuzzy System for Dynamic Crossover Parameter Adaptation in Differential Evolution and Its Application to Controller Optimization. Int. J. Fuzzy Syst. 22, 414–427 (2020). https://doi.org/10.1007/s40815-019-00723-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00723-w

Keywords

Navigation