Skip to main content
Log in

A Hybrid Short-Term Building Electrical Load Forecasting Model Combining the Periodic Pattern, Fuzzy System, and Wavelet Transform

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Accurate forecasting and scientific analysis of building electrical load can improve the level of building energy management to meet the requirements of energy saving. To further strengthen the forecasting accuracy, this study presents a hybrid model for building electrical load forecasting. The proposed method combines the fuzzy inference system and the periodicity knowledge together to generate accurate forecasting results. In this method, in order to better reflect the actual characteristic of the electrical load, the wavelet transform method is firstly utilized to filter the original building electrical load data. Then, the daily periodic pattern is extracted from such filtered electrical load data, and the residual data are obtained through removing the daily periodic pattern. Further, the residual data-driven forecasting model is constructed by the functionally weighted single-input-rule-modules connected fuzzy inference system (FWSIRM-FIS). This FWSIRM-FIS model is used to provide the compensation to the periodic component. In other words, the daily periodic component and the residual forecasting are combined to achieve the final forecasting result. Specifically, in order to assure the forecasting performance of the FWSIRM-FIS model, the subtraction clustering method is employed to construct the SIRMs while the least square estimation is utilized to optimize the parameters in the functional weights of the FWSIRM-FIS. Finally, in this paper, two real-world experiments are made and detailed comparisons with four traditional models are given. Experimental and comparison results demonstrate that the proposed hybrid model has the smallest forecasting errors and can achieve the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tian, C., Li, C., Zhang, G., Lv, Y.: Data driven parallel prediction of building energy consumption using generative adversarial nets. Energy Build. 186, 230–243 (2019)

    Google Scholar 

  2. Li, J.Q., Sang, H.Y., Han, Y.Y., Wang, C.G., Gao, K.Z.: Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions. J. Clean. Prod. 181, 584–598 (2018)

    Google Scholar 

  3. Crawley, D.B., Lawrie, L.K., Winkelmann, F.C., Buhl, W.F., Huang, Y.J., Pedersen, C.O., Strand, R.K., Liesen, R.J., Fisher, D.E., Witte, M.J., et al.: Energyplus: creating a new-generation building energy simulation program. Energy Build. 33(4), 319–331 (2001)

    Google Scholar 

  4. Norford, L., Socolow, R.H., Hsieh, E.S., Spadaro, G.: Two-to-one discrepancy between measured and predicted performance of a low-energy office building: insights from a reconciliation based on the doe-2 model. Energy Build. 21(2), 121–131 (1994)

    Google Scholar 

  5. Crawley, D.B., Hand, J.W., Kummert, M., Griffith, B.T.: Contrasting the capabilities of building energy performance simulation programs. Build. Environ. 43(4), 661–673 (2008)

    Google Scholar 

  6. Westphal, F.S., Lamberts, R.: The use of simplified weather data to estimate thermal loads of non-residential buildings. Energy Build. 36(8), 847–854 (2004)

    Google Scholar 

  7. Yao, R., Steemers, K.: A method of formulating energy load profile for domestic buildings in the UK. Energy Build. 37(6), 663–671 (2005)

    Google Scholar 

  8. Guo, Y., Nazarian, E., Ko, J., Rajurkar, K.: Hourly cooling load forecasting using time-indexed ARX models with two-stage weighted least squares regression. Energy Convers. Manag. 80, 46–53 (2014)

    Google Scholar 

  9. Kavousi-Fard, A., Kavousi-Fard, F.: A new hybrid correction method for short-term load forecasting based on ARIMA, SVR and CSA. J. Exp. Theor. Artif. Intell. 25(4), 559–574 (2013)

    Google Scholar 

  10. Cui, H., Peng, X.: Summer short-term load forecasting based on ARIMAX model. Power Syst. Protect. Control 43(4), 108–114 (2015)

    Google Scholar 

  11. Newsham, G.R., Donnelly, C.L.: A model of residential energy end-use in Canada: using conditional demand analysis to suggest policy options for community energy planners. Energy Policy 59, 133–142 (2013)

    Google Scholar 

  12. Kouhi, S., Keynia, F.: A new cascade NN based method to short-term load forecast in deregulated electricity market. Energy Convers. Manag. 71, 76–83 (2013)

    Google Scholar 

  13. Zeng, Y.R., Zeng, Y., Choi, B., Wang, L.: Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network. Energy 127, 381–396 (2017)

    Google Scholar 

  14. Badran, S.M., Abouelatta, O.B.: Forecasting electrical load using ANN combined with multiple regression method. Res. Bull. Jordan ACM 2(2), 152–158 (2011)

    Google Scholar 

  15. Li, K., Hu, C., Liu, G., Xue, W.: Building’s electricity consumption prediction using optimized artificial neural networks and principal component analysis. Energy Build. 108, 106–113 (2015)

    Google Scholar 

  16. Li, T., Guo, J., Luo, D., Tang, J.: Region load forecasting based on load characteristics analysis and GRNN. In: Proceedings of the 9th International Symposium on Linear Drives for Industry Applications, vol. 2, pp. 493–500. Springer, Berlin (2014)

    Google Scholar 

  17. Huo, J., Shi, T., Chang, J.: Comparison of random forest and SVM for electrical short-term load forecast with different data sources. In: 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 1077–1080. IEEE, New York (2016)

  18. Espinoza, M., Suykens, J.A., De Moor, B.: Fixed-size least squares support vector machines: a large scale application in electrical load forecasting. Comput. Manag. Sci. 3(2), 113–129 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Chen, Y., Xu, P., Chu, Y., Li, W., Wu, Y., Ni, L., Bao, Y., Wang, K.: Short-term electrical load forecasting using the support vector regression (SVR) model to calculate the demand response baseline for office buildings. Appl. Energy 195, 659–670 (2017)

    Google Scholar 

  20. Duan, P., Xie, K., Guo, T., Huang, X.: Short-term load forecasting for electric power systems using the PSO-SVR and FCM clustering techniques. Energies 4(1), 173–184 (2011)

    Google Scholar 

  21. Lei, Z., Su, W.: Mold level predict of continuous casting using hybrid EMD-SVR-GA algorithm. Processes 7(3), 177 (2019)

    Google Scholar 

  22. Naji, S., Keivani, A., Shamshirband, S., Alengaram, U.J., Jumaat, M.Z., Mansor, Z., Lee, M.: Estimating building energy consumption using extreme learning machine method. Energy 97, 506–516 (2016)

    Google Scholar 

  23. Zhang, Y., Zhang, L., Liu, Y.: Implementation of maximum power point tracking based on variable speed forecasting for wind energy systems. Processes 7(3), 158 (2019)

    Google Scholar 

  24. Li, K., Su, H.: Forecasting building energy consumption with hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system. Energy Build. 42(11), 2070–2076 (2010)

    Google Scholar 

  25. Lou, C.W., Dong, M.C.: Modeling data uncertainty on electric load forecasting based on type-2 fuzzy logic set theory. Eng. Appl. Artif. Intell. 25(8), 1567–1576 (2012)

    Google Scholar 

  26. Li, X., Deng, Y., Ding, L., Jiang, L.: Building cooling load forecasting using fuzzy support vector machine and fuzzy c-mean clustering. In: 2010 International Conference on Computer and Communication Technologies in Agriculture Engineering, vol. 1, pp. 438–441. IEEE, New York (2010)

  27. Jain, R., Jain, N., Gupta, Y., Chugh, T., Chugh, T., Hemanth, D.J.: A modified fuzzy logic relation-based approach for electricity consumption forecasting in India. Int. J. Fuzzy Syst. (2019). https://doi.org/10.1007/s40815-019-00704-z

    Article  Google Scholar 

  28. Li, C., Ding, Z., Yi, J., Lv, Y., Zhang, G.: Deep belief network based hybrid model for building energy consumption prediction. Energies 11(1), 242 (2018)

    Google Scholar 

  29. Li, C., Ding, Z., Zhao, D., Yi, J., Zhang, G.: Building energy consumption prediction: an extreme deep learning approach. Energies 10(10), 1525 (2017)

    Google Scholar 

  30. Duan, P.Y., Li, J.Q., Wang, Y., Sang, H.Y., Jia, B.X.: Solving chiller loading optimization problems using an improved teaching-learning-based optimization algorithm. Optim. Control Appl. Methods 39(4), 65–77 (2017)

    MATH  Google Scholar 

  31. Li, C., Yi, J., Wang, H., Zhang, G., Li, J.Q.: Interval data driven construction of shadowed sets with application to linguistic word modelling. Inf. Sci. 507, 503–521 (2020)

    Google Scholar 

  32. Pal, S.S., Kar, S.: A hybridized forecasting method based on weight adjustment of neural network using generalized type-2 fuzzy set. Int. J. Fuzzy Syst. 21(1), 308–320 (2019). https://doi.org/10.1007/s40815-018-0534-z

    Article  Google Scholar 

  33. Soto, J., Castillo, O., Melin, P., Pedrycz, W.: A new approach to multiple time series prediction using mimo fuzzy aggregation models with modular neural networks. Int. J. Fuzzy Syst. 21(5), 1629–1648 (2019). https://doi.org/10.1007/s40815-019-00642-w

    Article  Google Scholar 

  34. Yi, J., Yubazaki, N., Hirota, K.: A proposal of SIRMs dynamically connected fuzzy inference model for plural input fuzzy control. Fuzzy Sets Syst. 125(1), 79–92 (2002)

    MathSciNet  MATH  Google Scholar 

  35. Yi, J., Naoyoshi, Y., Kaoru, H.: Stabilization fuzzy control of parallel-type double inverted pendulum system using the SIRMs dynamically connected fuzzy inference model. Artif. Intell. Eng. 15(3), 297–308 (2001)

    MATH  Google Scholar 

  36. Peng, W., Li, C., Zhang, G., Yi, J.: Interval type-2 fuzzy logic based transmission power allocation strategy for lifetime maximization of WSNs. Eng. Appl. Artif. Intell. 87, 103269 (2020). https://doi.org/10.1016/j.engappai.2019.103269

    Article  Google Scholar 

  37. Li, C., Wang, L., Zhang, G., Wang, H., Shang, F.: Functional-type single-input-rule-modules connected neural fuzzy system for wind speed prediction. IEEE/CAA J. Autom. Sin. 4(4), 751–762 (2017)

    Google Scholar 

  38. Seki, H., Nakashima, T.: Some consideration of SIRMs connected fuzzy inference model with functional weights. In: Intelligent Decision Technologies, pp. 471–476. Springer, Berlin (2012)

    Google Scholar 

  39. Li, C., Gao, J., Yi, J., Zhang, G.: Analysis and design of functionally weighted single-input-rule-modules connected fuzzy inference systems. IEEE Trans. Fuzzy Syst. 26(1), 56–71 (2018)

    Google Scholar 

  40. Dordonnat, V., Koopman, S.J., Ooms, M., Dessertaine, A., Collet, J.: An hourly periodic state space model for modelling French national electricity load. Int. J. Forecast. 24(4), 566–587 (2008)

    Google Scholar 

  41. Xue, X., Han, H., Wang, S., Qin, C.: Computational experiment-based evaluation on context-aware O2O service recommendation. IEEE Trans. Serv. Comput. PP(99), 1–1 (2019)

    Google Scholar 

  42. Xue, X., Wang, S., Zhang, L., Feng, Z., Guo, Y.: Social learning evolution (SLE): computational experiment-based modeling framework of social manufacturing. IEEE Trans. Ind. Inform. 15(6), 3343–3355 (2019)

    Google Scholar 

  43. Xue, X., Guo, Y., Chen, S., Wang, S.: Analysis and controlling of manufacturing service ecosystem: a research framework based on the parallel system theory. IEEE Trans. Serv. Comput. 1 (2019). https://doi.org/10.1109/TSC.2019.2917445

  44. Ghaderi, S.F., Azadeh, A., Keyno, H.S.: Forecasting electricity consumption by separating the periodic variable and decompositions the pattern. In: 2007 IEEE International Conference on Industrial Engineering and Engineering Management, pp. 292–296 (2007)

  45. Keyno, H.R.S., Ghaderi, F., Azade, A., Razmi, J.: Forecasting electricity consumption by clustering data in order to decline the periodic variable’s affects and simplification the pattern. Energy Convers. Manag. 50(3), 829–836 (2009)

    Google Scholar 

  46. Zhang, D.: Wavelet transform. In: Fundamentals of Image Data Mining, pp. 35–44. Springer, Berlin (2019)

    Google Scholar 

  47. Chiu, S.L.: Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2(3), 267–278 (1994)

    Google Scholar 

  48. Nelles, O.: Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Springer Science and Business Media, Berlin (2013)

    MATH  Google Scholar 

  49. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The Johns Hopkins University Press, Maryland (2013)

    MATH  Google Scholar 

  50. Quintana-Orti, G., Quintana-Orti, E.S., Petitet, A.: Efficient solution of the rank-deficient linear least squares problem. SIAM J. Sci. Comput. 20, 1155–1163 (1998)

    MathSciNet  MATH  Google Scholar 

  51. Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 14(1), 35–62 (1998)

    Google Scholar 

  52. Güneri Tosunoğlu, N., Apaydın, A.: A new spatial algorithm based on adaptive fuzzy neural network for prediction of crustal motion velocities in earthquake research. Int. J. Fuzzy Syst. 20(5), 1656–1670 (2018). https://doi.org/10.1007/s40815-018-0483-6

    Article  Google Scholar 

  53. Karsoliya, S.: Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture. Int. J. Eng. Trends Technol. 3(6), 714–717 (2012)

    Google Scholar 

  54. Wang, L., Zeng, Y., Chen, T.: Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Syst. Appl. 42(2), 855–863 (2015)

    Google Scholar 

  55. Shine, P., Scully, T., Upton, J., Murphy, M.D.: Multiple linear regression modelling of on-farm direct water and electricity consumption on pasture based dairy farms. Comput. Electron. Agric. 148, 337–346 (2018)

    Google Scholar 

Download references

Funding

This work was financially supported by the Taishan Scholar Project of Shandong Province (TSQN201812092), the Key Research and Development Program of Shandong Province (2019GGX101072), the National Natural Science Foundation of China (61573225, 61473176), and the Youth Innovation Technology Project of Higher School in Shandong Province (2019KJN005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengdong Li.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Tang, M., Zhang, G. et al. A Hybrid Short-Term Building Electrical Load Forecasting Model Combining the Periodic Pattern, Fuzzy System, and Wavelet Transform. Int. J. Fuzzy Syst. 22, 156–171 (2020). https://doi.org/10.1007/s40815-019-00783-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00783-y

Keywords

Navigation