Skip to main content
Log in

Power Load Forecast Based on Fuzzy BP Neural Networks with Dynamical Estimation of Weights

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The short-term power load forecast is deeply studied by integrating fuzzy BP neural networks and composite adaptive filtering in this paper. Due to the difficulty on accurate modeling of complex factors in smart grid, the fuzzy technology is introduced to deal with the uncertain factors. Meanwhile, data-driven method, such as neural networks, is used as the basic frame of the power load forecast by combing the fuzzy technology. Thereby, to design a highly effective training scheme becomes the main problem on the weights of the BP-NNs. To realize better weights training, the combined filtering technology is fully adopted by fusing adaptive filtering methods based on observable degree (OD) analysis, Sage–Husa adaptive technology, and variational Bayesian method. Thereby, a novel power load forecast algorithm is proposed based on the fuzzy BP-NNs and the combined adaptive cubature Kalman filter. Experiment based on practical power load data is presented to validate the effectiveness of the proposed short-term power load algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kovaltchouk, T., Blavette, A., Aubry, J., et al.: Comparison between centralized and decentralized storage energy management for direct wave energy converter farm. IEEE Trans. Energy Convers. 31(3), 1051–1058 (2016)

    Article  Google Scholar 

  2. Hu, Y.C.: Electricity consumption prediction using a neural-networks-based grey forecasting approach. J. Oper. Res. Soc. (2016). https://doi.org/10.1057/s41274-016-0150-y

    Article  Google Scholar 

  3. Mei, S.W., Li, R., Xue, X.D., et al.: Paving the way to smart micro energy grid: concepts, design principles, and engineering practices. CSEE J. Power Energy Syst. 3(4), 440–449 (2017)

    Article  Google Scholar 

  4. Zhao, H.S., Wang, Y.L., Zhan, Y., et al.: Practical model for energy consumption analysis of beam pumping motor systems and its energy-saving applications. IEEE Trans. Ind. Appl. 54(2), 1006–1016 (2018)

    Article  Google Scholar 

  5. Lin, C.C., Deng, D.J., Kuo, C.C., et al.: Optimal charging control of energy storage and electric vehicle of an individual in the internet of energy with energy trading. IEEE Trans. Ind. Inform. 14(6), 2570–2578 (2018)

    Article  Google Scholar 

  6. Rahbar, K., Chai, C.C., Zhang, R.: Energy cooperation optimization in microgrids with renewable energy integration. IEEE Trans. Smart Grid 9(2), 1482–1493 (2018)

    Article  Google Scholar 

  7. Fletscher, L.A., Surez, L.A., Grace, D., et al.: Energy-aware resource management in heterogeneous cellular networks with hybrid energy sources. IEEE Trans. Netw. Serv. Manage. 16(1), 279–293 (2019)

    Article  Google Scholar 

  8. Solano, J., Hissel, D., Pera, M.C.: Fail-safe power for hybrid electric vehicles: implemening a self-sustained global energy management system. IEEE Veh. Technol. Mag. 13(2), 34–39 (2018)

    Article  Google Scholar 

  9. Chen, Y.X., Li, W.H., Iannuzzo, F.: Investigation and classification of short-circuit failure modes based on three-dimensional safe operating area for high-power IGBT modules. IEEE Trans. Power Electron. 33(2), 1075–1086 (2018)

    Article  Google Scholar 

  10. Charytoniuk, W.: Nonparametric regression based short-term load forecasting. IEEE 13(3), 725–730 (1998)

    Google Scholar 

  11. Wu, X., Wang, Y.: Extended and Unscented Kalman filtering based feedforward neural networks for time series prediction. Appl. Math. Model. 36(3), 1123–1131 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Quilumba, F.L., Lee, W.J., Huang, H., et al.: Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities. IEEE Trans. Smart Grid 6(2), 911–918 (2015)

    Article  Google Scholar 

  13. Gastaldi, M., Lamedica, R., Nardecchia, A., et al.: Short-term forecasting of municipal load through a Kalman filtering based approach. Proc. IEEE PES Power Syst. Conf. Expos. 3, 1453–1458 (2014)

    Google Scholar 

  14. Guan, C., Luh, P.B., Michel, L.D., et al.: Hybrid Kalman filters for very short-term load forecasting and prediction interval estimation. IEEE Trans. Power Syst. 28(4), 3806–3817 (2013)

    Article  Google Scholar 

  15. Al-Hamadi, H.M., Soliman, S.A.: Fuzzy short-term electric load forecasting using Kalman filter. IEE Proc. Gener. Transm. Distrib. 153(2), 217–227 (2006)

    Article  Google Scholar 

  16. Ma, J.B., Yang, H.G.: Application of adaptive Kalman filtering in power system short-term load forecasting. Power Syst. Technol. 29(1), 75–79 (2005)

    Google Scholar 

  17. Wang, Y., Xia, Q., Kang, C.Q.: Secondary forecasting based on deviation analysis for short-term load forecasting. IEEE Trans. Power Syst. 26(2), 500–507 (2011)

    Article  Google Scholar 

  18. Wang, Y., Chen, Q.X., Zhang, N., et al.: Conditional residual modeling for probabilistic load forecasting. IEEE Trans. Power Syst. 33(6), 7327–7330 (2018)

    Article  Google Scholar 

  19. Fay, D., Ringwood, J.V.: On the influence of weather forecast errors in short-term load forecasting models. IEEE Trans. Power Syst. 25(3), 1751–1758 (2015)

    Article  Google Scholar 

  20. Ge, Q.B., Li, W.B., Wen, C.L.: SCKF-STF-CN: a universal nonlinear filter for maneuver target tracking. J Zhejiang Univ SCI C 12(8), 678–686 (2011)

    Article  Google Scholar 

  21. Li, W., He, X., Zhang, W. D.: Application of adaptive CKF algorithm in short-term load forecasting of smart grid. In: Proccedings of 2014 Chinese control conference. 8145-8149 (2014)

  22. Li, B.W., Zhang, J., He, Y., et al.: Short-term load-forecasting method based on wavelet decomposition with second-order gray neural network model combined with ADF test. IEEE Access 5, 16324–16331 (2017)

    Article  Google Scholar 

  23. Methaprayoon, K., Lee, W.J., Rasmiddatta, Sothaya, et al.: Multistage artificial neural network short-term load forecasting engine with front-end weather forecast. IEEE Trans. Ind. Appl. 43(6), 1410–1416 (2007)

    Article  Google Scholar 

  24. Senjyu, T., Takara, H., Uezato, K., et al.: One-hour-ahead load forecasting using neural network. IEEE Trans. Power Syst. 17(1), 113–118 (2002)

    Article  Google Scholar 

  25. Cecati, C., Kolbusz, J., et al.: A novel RBF training algorithm for short-term electric load forecasting and comparative studies. IEEE Trans. Ind. Electron. 62(10), 6519–6529 (2015)

    Article  Google Scholar 

  26. Haverstad, B.A., Tidemann, A., Langseth, H., et al.: Short-term load forecasting with seasonal decomposition using evolution for parameter tuning. IEEE Trans. Smart Grid 6(4), 1904–1913 (2015)

    Article  Google Scholar 

  27. Zhu, X.H.: Research on short-term load forecasting model considering meteorological factors. Math. Pract. Theory 3, 131–143 (2018)

    Google Scholar 

  28. Nie, H., Liu, G., Liu, X., et al.: Hybrid of ARIMA and SVMs for short-term load forecasting. Energy Procedia 16, 0–1460 (2012)

    Google Scholar 

  29. Chao, S., Huang, M.X., Ye, J.B.: Application of wavelet analysis method in power system short-term load forecasting. J. Electr. Power Syst. Autom. 14(3), 8–12 (2002)

    Google Scholar 

  30. Mastorocostas, P.A., Theocharis, J.B., Bakirtzis, A.G.: Fuzzy modeling for short term load forecasting using the orthogonal least squares method. IEEE Trans. Power Syst. 14(1), 29–36 (1999)

    Article  Google Scholar 

  31. Pal, S.S., Kar, S.: A hybridized forecasting method based on weight adjustment of neural network using generalized type-2 fuzzy set. Int. J. Fuzzy Syst. 21(1), 308–320 (2019)

    Article  Google Scholar 

  32. Lee, W.J., Jung, H.Y., Yoon, J.H., Choi, S.H.: A novel forecasting method based on F-transform and fuzzy time series. Int. J. Fuzzy Syst. 19(6), 1793–1802 (2017)

    Article  Google Scholar 

  33. Ge, Q.B., Wei, Z.L., Liu, M.X., et al.,: Adaptive quantized estimation fusion using strong tracking filtering and variational Bayesian. IEEE Transactions on Systems, Man and Cybernetics: Systems (Oct. 2017) (Online)

  34. Tosunolu, N.G., Apaydn, A.: A new spatial algorithm based on adaptive fuzzy neural network for prediction of crustal motion velocities. Int. J. Fuzzy Syst. 20(5), 1656–1670 (2018)

    Article  Google Scholar 

  35. Lee, C.H., Lee, Y.H., Lin, C.M.: Nonlinear systems identification and control using uncertain rule-based fuzzy neural systems with stable learning mechanism. Int. J. Fuzzy Syst. 19(2), 470–488 (2017)

    Article  MathSciNet  Google Scholar 

  36. Ge, Q.B., Xu, D.X., Wen, C.L., Liang, Y.L.: Cubature information filters with correlated noises and their applications in decentralized fusion. Signal Process. 94, 434–444 (2014)

    Article  Google Scholar 

  37. Ge, Q.B., Wen, C.L., Duan, S.A.: Fire localization based on range-range-range model for limited interior space. IEEE Trans. Instrum. Meas. 63(9), 2223–2237 (2014)

    Article  Google Scholar 

  38. Ge, Q.B., Wen, C.L., Chen, S.D., et al.: Adaptive cubature strong tracking information filter using variational Bayesian method. In: Proceedings of the 19th world congress of the international federation of automatic control. Cape Town, South Africa 24–29 (2014)

  39. Peng, S.M., Chen, C., Shi, H.B., et al.: State of charge estimation of battery energy storage systems based on adaptive unscented Kalman filter with a noise statistics estimator. IEEE Access 5, 13202–13212 (2017)

    Article  Google Scholar 

  40. Ge, Q.B., Ma, J.Y., Chen, S.D., Wang, Y.T., Bai, L.: Observable degree analysis on mobile target tracking for wireless sensor networkss. Asian J. Control 19(14), 1259–1270 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ge, Q.B., Chen, T.X., He, H.L.: Observable degree analysis based on the CRLB. Sci. China Inf. Sci. 62(5), 050209 (2019)

    Article  Google Scholar 

  42. He, M.G., Ge Q.B.: Research on a filtering algorithm based on Sage-Husa and observable degree. Control Engineering of China (2019) (Accepted, to be published)

  43. Sage, A.P., Husa, G.W.: Adaptive filtering with unknown prior statistics. In: Proceedings of joint automatic control conference, Boulder, USA 760–769 (1969)

  44. Sarkka, S.: Recursive noise adaptive Kalman filtering by variational bayesian approximations. IEEE Trans. Autom. Control 54(3), 596–600 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Gao, X.D., You, D.Y., Katayama, S.: Seam tracking monitoring based on adaptive Kalman filter embedded elman neural network during high-power fiber laser welding. IEEE Trans. Ind. Electron. 59(11), 4315–4325 (2012)

    Article  Google Scholar 

  46. Dai, H., Wei, X., Sun, Z.: State and parameter estimation of a HEV Li-ion battery pack using adaptive Kalman filter with a new SOCOCV concept. In: Proc. Int. Conf. Meas. Technol. Mechatron. Autom., Shanghai, China 375–380 (2009)

  47. Guo, N., Fang, Y., Tian, Z.L., Cao, S.Y.: Research on SOC fuzzy weighted algorithm based on GA-BP neural network and ampere integral method. J. Eng. 2019(15), 576–580 (2019)

    Google Scholar 

  48. Kang, C.Q., Xia, Q., Liu, M.: Power system load forecast. China Electric Power Press, Beijing (2007)

    Google Scholar 

  49. Peretto, P., Niez, J.J.: Stochastic dynamics of neural networks. IEEE Trans. Syst. Man Cybern. 16(1), 73–83 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  50. Arasaratnam, I., Haykin, S.: Cubature Kalman filters. IEEE Trans. Autom. Control 54(6), 1254–1269 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Shi, Y., Han, C.Z.: Application of adaptive UKF algorithm in target tracking. J. Autom. 37(6), 755–759 (2011)

    Google Scholar 

  52. Lee, D.J.: Nonlinear estimation and multiple sensor fusion using unscented information filtering. IEEE Signal Process. Lett. 15, 861–864 (2008)

    Article  Google Scholar 

  53. Liang, H., Wang, D.D.: Shipborne alignment adaptive filtering method based on state parameter observability analysis. Chin. J. Inert. Technol. 22(1), 430–436 (2014)

    MathSciNet  Google Scholar 

  54. Company beind Easr-Slovakia Power Distribution Company. World-wide competition within the EUNITE network. EUNITE competition report (1 Aug 2001) http://neuron.tuke.sk/competition/index.php

  55. Zhou, Z.B., Li, Y., Fu, C., et al.: Least-squares support vector machine-based Kalman filtering for GNSS navigation with dynamic model real-time correction. IET Radar Sonar Navig. 11(3), 528–538 (2017)

    Article  Google Scholar 

  56. Qian, M.P.: Introduction to stochastic processes, pp. 7–12. Peking University Press, Beijing (1990)

    Google Scholar 

  57. Li, C.L., Zhang, H.N., Yang, L.B., et al.: Photovoltaic power generation prediction based on unscented Kalman filter neural networks. J. Chongqing Univ. 40(4), 54–61 (2017)

    Google Scholar 

Download references

Funding

This work was supported by Zhejiang Provincial Nature Science Foundation of China (Grant Nos. LR17F030005) and National Natural Science Foundation of China (NSFC) (Grants no. 61773147, U1509203, 51677047, U1866209).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quanbo Ge or Yani Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Q., Jiang, H., He, M. et al. Power Load Forecast Based on Fuzzy BP Neural Networks with Dynamical Estimation of Weights. Int. J. Fuzzy Syst. 22, 956–969 (2020). https://doi.org/10.1007/s40815-019-00796-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00796-7

Keywords

Navigation