Skip to main content

Advertisement

Log in

A Decoupled Method for Credibility-Based Design Optimization with Fuzzy Variables

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Fuzzy uncertainty (FU) exists widely in engineering applications, but there lack design optimization methods under FU, thus a credibility-based design optimization (CBDO) is focused to obtain the safety design under FU in this paper. Firstly, the concepts of credibility index and most credible point (MCP) are presented to measure the safety degree under FU, where the credibility index and the MCP, respectively, show similar properties as the reliability index and the most probable point under random uncertainty. Secondly, the inverse MCP (IMCP) is defined with respect to the required credibility, and the detailed method is established for searching IMCP, on which the performance measure approach (PMA) can be combined to solve the CBDO. Since the PMA combined with the IMCP includes a time-consuming double-loop strategy, the sequential optimization and credibility assessment (SOCA) is proposed to decouple the double-loop strategy thirdly. In the SOCA, a shifting vector constructed by the IMCP is used to transform the credibility constraint into an equivalent deterministic one, on which the double-loop strategy can be avoided to reduce the computational cost for solving the CBDO. One numerical example and two engineering examples fully illustrate the efficiency and accuracy of the SOCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yao, W., Chen, X., Luo, W., et al.: Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles. Prog. Aerosp. Sci. 47, 450–479 (2011)

    Article  Google Scholar 

  2. Aoues, Y., Chateauneuf, A.: Benchmark study of numerical methods for reliability-based design optimization. Struct. Multidiscipl. Optim. 41, 277–294 (2010)

    Article  MathSciNet  Google Scholar 

  3. Reddy, M., Grandhi, R.: Reliability based structural optimization: a simplified safety index approach. Comput. Struct. 53(6), 1407–1418 (1994)

    Article  Google Scholar 

  4. Tu, J., Choi, K., Park, Y.: A new study on reliability-based design optimization. J. Mech. Des. 121(4), 557–564 (1999)

    Article  Google Scholar 

  5. Lee, J., Yang, Y., Ruy, W.: A comparative study on reliability-index and target-performance-based probabilistic structural design optimization. Comput. Struct. 80(3), 257–269 (2002)

    Article  Google Scholar 

  6. Liang, J., Mourelatos, Z., Tu, J.: A single-loop method for reliability-based design optimization. In: Proceedings of ASME design engineering technical conferences (2004)

  7. Jiang, C., Qiu, H., Gao, L., et al.: An adaptive hybrid single-loop method for reliability-based design optimization using iterative control strategy. Struct. Multidiscipl. Optim. 56(6), 1271–1286 (2017)

    Article  MathSciNet  Google Scholar 

  8. Keshtegar, B., Hao, P.: Enhanced single-loop method for efficient reliability-based design optimization with complex constraints. Struct. Multidiscipl. Optim. 57, 1731–1747 (2018)

    Article  MathSciNet  Google Scholar 

  9. Du, X., Chen, W.: Sequential optimization and reliability assessment method for efficient probabilistic design. J. Mech. Des. 126(2), 225–233 (2004)

    Article  Google Scholar 

  10. Cheng, G., Xu, L., Jiang, L.: A sequential approximate programming strategy for reliability-based structural optimization. Comput. Struct. 84(21), 1353–1367 (2006)

    Article  Google Scholar 

  11. Cho, T., Lee, B.: Reliability-based design optimization using convex linearization and sequential optimization and reliability assessment method. Struct. Saf. 33(1), 42–50 (2011)

    Article  MathSciNet  Google Scholar 

  12. Chen, Z., Qiu, H., Gao, L., et al.: An adaptive decoupling approach for reliability-based design optimization. Comput. Struct. 117, 58–66 (2013)

    Article  Google Scholar 

  13. Yi, P., Zhu, Z., Gong, J.: An approximate sequential optimization and reliability assessment method for reliability-based design optimization. Struct. Multidiscipl. Optim. 54(6), 1367–1378 (2016)

    Article  MathSciNet  Google Scholar 

  14. Yin, H., Yu, D., Yin, S., et al.: Possibility-based robust design optimization for the structural-acoustic system with fuzzy parameters. Mech. Syst. Sign. Process. 102, 329–345 (2018)

    Article  Google Scholar 

  15. Beer, M., Liebscher, M.: Designing robust structures—a nonlinear simulation based approach. Comput. Struct. 86, 1102–1122 (2008)

    Article  Google Scholar 

  16. Wu, Y.Q., Lu, R.Q., Shi, P., et al.: Sampled-data synchronization of complex networks with partial couplings and T–S fuzzy nodes. IEEE Trans. Fuzzy Syst. 26(2), 782–793 (2017)

    Article  Google Scholar 

  17. Wu, Y.Q., Karimi, H.R., Lu, R.Q.: Sampled-data control of network systems in industrial manufacture. IEEE Trans. Industr. Electron. 65(11), 9016–9024 (2018)

    Article  Google Scholar 

  18. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1(1), 3–28 (1978)

    Article  MathSciNet  Google Scholar 

  19. Dubois, D., Prade, H.: Possibility theory: an approach to computerized processing of uncertainty. Plenum Press, New York (1988)

    Book  Google Scholar 

  20. Mourelatos, Z.P., Zhou, J.: Reliability estimation and design with insufficient data based on possibility theory. AIAA journal 43(8), 1696–1705 (2005)

    Article  Google Scholar 

  21. Du, L., Choi, K.K., Youn, B.D.: Inverse Possibility Analysis Method for Possibility-Based Design Optimization. AIAA Journal 44(11), 2682–2690 (2006)

    Article  Google Scholar 

  22. Tang, Z.C., Lu, Z.Z., Hu, J.X.: An efficient approach for design optimization of structures involving fuzzy variables. Fuzzy Sets Syst. 225, 52–73 (2014)

    Article  MathSciNet  Google Scholar 

  23. Wang, C., Qiu, Z., Xu, M., et al.: Novel numerical methods for reliability analysis and optimization in engineering fuzzy heat conduction problem. Struct. Multidiscipl. Optim. 56(6), 1247–1257 (2017)

    Article  MathSciNet  Google Scholar 

  24. Youn, B.D., Choi, K.K., Du, L., et al.: Integration of possibility-based optimization and robust design for epistemic uncertainty. J. Mech. Des. 129(8), 876–882 (2007)

    Article  Google Scholar 

  25. Liu, B.: Uncertainty theory, 2nd edn. Springer, Berlin (2002)

    Google Scholar 

  26. Jia, B.X., Lu, Z.Z.: Root finding method of failure credibility for fuzzy safety analysis. Struct. Multidiscipl. Optim. 58, 1917–1934 (2018)

    Article  MathSciNet  Google Scholar 

  27. Feng, K.X., Lu, Z.Z., Pang, C., et al.: Time-dependent failure credibility analysis and its optimization based computational methods. Eng. Struct. 181, 605–616 (2019)

    Article  Google Scholar 

  28. Möller, B., Graf, W., Beer, M.: Fuzzy structural analysis using α-level optimization. Comput. Mech. 26, 547–565 (2000)

    Article  Google Scholar 

  29. Ling, C.Y., Lu, Z.Z., Feng, K.X.: An efficient method combining adaptive Kriging and fuzzy simulation for estimating failure credibility. Aerosp. Sci. Technol. 92, 620–634 (2019)

    Article  Google Scholar 

  30. Wang, J.Q., Lu, Z.Z., Shi, Y.: Aircraft icing safety analysis method in presence of fuzzy inputs and fuzzy state. Aerosp. Sci. Technol. 82–83, 172–184 (2018)

    Article  Google Scholar 

  31. Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans. Fuzzy Syst. 10, 445–450 (2002)

    Article  Google Scholar 

  32. Marano, G.C., Quaranta, G.: A new possibilistic reliability index definition. Acta Mater. 210, 291–303 (2010)

    MATH  Google Scholar 

  33. Jia, B. X., Lu, Z. Z:. A structural safety analysis method in the presence of fuzzy uncertainty, Fuzzy sets and systems, under review (2019)

  34. Du, X., Sudjianto, A., Chen, W.: An integrated framework for optimization under uncertainty using inverse reliability strategy. J. Mech. Des. 126, 562–570 (2004)

    Article  Google Scholar 

  35. Min, J. H., Choi, D. H.: Reliability analysis technique using local approximation of a cumulative distribution function. In: 6th World Congresses of structural and multidisciplinary optimization, Rio de Janeiro, Brazil, (2005)

  36. Wu, Y.T.: Computational methods for efficient structural reliability and reliability sensitivity analysis. AIAA J. 32(8), 1717–1723 (1994)

    Article  Google Scholar 

  37. Youn, B.D., Choi, K.K., Park, Y.H.: Hybrid analysis method for reliability-based design optimization. J. Mech. Des. 125(2), 221–232 (2003)

    Article  Google Scholar 

  38. Youn, B.D., Choi, K.K., Du, L.: Adaptive probability analysis using an enhanced hybrid mean value method. Struct. Multidiscipl. Optim. 29(2), 134–148 (2004)

    Article  Google Scholar 

  39. Liu, B.: UncertaintyTheory, 4th edn. Springer, Berlin (2015)

    Google Scholar 

  40. Lee, J.J., Lee, B.C.: Efficient evaluation of probabilistic constraints using an envelope function. Eng. Optim. 37(2), 185–200 (2005)

    Article  Google Scholar 

  41. Youn, B.D., Choi, K.K.: Reliability-based design optimization for crashworthiness of vehicle side impact. Struc. Multidiscipl. Optim. 26, 272–283 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The support by the National Natural Science Foundation of China (Grant 51775439) and National Science and Technology Major Project (2017-IV-0009-0046) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenzhou Lu.

Appendices

Appendices

1.1 Appendix 1

See Tables 8 and 9.

Table 8 Regular fuzzy credibility distributions and their characteristics
Table 9 Standard regular fuzzy credibility distributions

1.2 Appendix 2

1.2.1 A Brief Introduction to Fuzzy Advanced First-Order Second-Moment (FAFOSM) Method

Consider a non-linear performance function \( Y = g\left( {\mathbf{X}} \right) \), and the MCP \( P^{*} \left( {x_{1}^{*} ,x_{2}^{*} , \cdots ,x_{n}^{*} } \right) \) is confined in the limit state equation as \( g(P^{*} ) = 0 \). \( \tilde{Y} \) is expanded as the first-order Taylor series at \( P^{*} \):

$$ \tilde{Y} = g\left( {x_{1}^{ *} ,x_{2}^{ *} , \ldots ,x_{n}^{ *} } \right) + \mathop \sum \nolimits_{i = 1}^{n} \left( {{{\partial g} \mathord{\left/ {\vphantom {{\partial g} {\partial x_{i} }}} \right. \kern-0pt} {\partial x_{i} }}} \right)_{{P^{ *} }} \left( {x_{i} - x_{i}^{ *} } \right) . $$
(B.1)

Thus, the linearized limit state equation is \( \mathop \sum \nolimits_{i = 1}^{n} \left( {{{\partial g} \mathord{\left/ {\vphantom {{\partial g} {\partial x_{i} }}} \right. \kern-0pt} {\partial x_{i} }}} \right)_{{P^{ *} }} \left( {x_{i} - x_{i}^{ *} } \right) = 0 \). According to the linear addition law of fuzzy expectation and variance [39], the approximate fuzzy first- and second-order moments are \( \tilde{E}\left( {\tilde{Y}_{{P^{ *} }} } \right) = \mathop \sum \nolimits_{i = 1}^{n} \left( {{{\partial g} \mathord{\left/ {\vphantom {{\partial g} {\partial x_{i} }}} \right. \kern-0pt} {\partial x_{i} }}} \right)_{{P^{ *} }} \left( {\mu_{i} - x_{i}^{ *} } \right) \) and \( \sqrt {\tilde{D}\tilde{Y}_{{P^{ *} }} } = \mathop \sum \nolimits_{i = 1}^{n} \left| {\left( {{{\partial g} \mathord{\left/ {\vphantom {{\partial g} {\partial x_{i} }}} \right. \kern-0pt} {\partial x_{i} }}} \right)_{{P^{ *} }} } \right|\sigma_{i} \). Then the credibility index can be expressed as

$$ \tilde{\beta } = \frac{{\tilde{E}\tilde{Y}_{{P^{ *} }} }}{{\sqrt {\tilde{D}\tilde{Y}_{{P^{ *} }} } }} = \frac{{\mathop \sum \nolimits_{i = 1}^{n} \left( {{{\partial g} \mathord{\left/ {\vphantom {{\partial g} {\partial x_{i} }}} \right. \kern-0pt} {\partial x_{i} }}} \right)_{{P^{ *} }} \left( {\mu_{i} - x_{i}^{ *} } \right)}}{{\mathop \sum \nolimits_{i = 1}^{n} \left| {\left( {{{\partial g} \mathord{\left/ {\vphantom {{\partial g} {\partial x_{i} }}} \right. \kern-0pt} {\partial x_{i} }}} \right)_{{P^{ *} }} } \right|\sigma_{i} }} . $$
(B.2)

After transforming all input variables and limit state equation into standardized space, the linearized limit state equation becomes \( \mathop \sum \nolimits_{i = 1}^{n} \left( {{{\partial g} \mathord{\left/ {\vphantom {{\partial g} {\partial x_{i} }}} \right. \kern-0pt} {\partial x_{i} }}} \right)_{{P^{*} }} \sigma_{i} (u_{i} - u_{i}^{*} ) = 0 \). Since the contour topology of the JMF of U is a series of hypercubes centered at the origin, coordinates of the MCP are solved by the following equations:

$$ \left\{ {\begin{array}{ll} {\mathop \sum \nolimits_{i = 1}^{n} \left( {{{\partial g} \mathord{\left/ {\vphantom {{\partial g} {\partial x_{i} }}} \right. \kern-0pt} {\partial x_{i} }}} \right)_{{P^{*} }} \sigma_{i} (u_{i} - u_{i}^{*} ) = 0} \\ {\left\| {\mathbf{u}} \right\|_{\infty } = \mathop {\hbox{max} }\nolimits_{1 \le i \le n} \left\{ {\left| {u_{i} } \right|} \right\} = t} \\ \end{array} } \right. . $$
(B.3)

In most cases, the MCP is on the vertex of the joint membership contour, i.e., \( \left| {u_{1} } \right| = \left| {u_{2} } \right| = \cdots = \left| {u_{n} } \right| = t \). After basic mathematical operations, it is not hard to obtain \( t = \frac{{\mathop \sum \nolimits_{i = 1}^{n} \left( {{{\partial g} \mathord{\left/ {\vphantom {{\partial g} {\partial x_{i} }}} \right. \kern-0pt} {\partial x_{i} }}} \right)_{{P^{ *} }} \left( {\mu_{i} - x_{i}^{ *} } \right)}}{{\mathop \sum \nolimits_{i = 1}^{n} \left| {\left( {{{\partial g} \mathord{\left/ {\vphantom {{\partial g} {\partial x_{i} }}} \right. \kern-0pt} {\partial x_{i} }}} \right)_{{P^{ *} }} } \right|\sigma_{i} }} \), which is also the definition of \( \tilde{\beta } \) exactly as shown in Eq. (B.2). As a result, compared with AFOSM in reliability, the MCP (or design point) can be considered as the point located at the limit state equation has the shortest Chebyshev distance to the origin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Lu, Z. & Jia, B. A Decoupled Method for Credibility-Based Design Optimization with Fuzzy Variables. Int. J. Fuzzy Syst. 22, 844–858 (2020). https://doi.org/10.1007/s40815-020-00813-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00813-0

Keywords

Navigation