Skip to main content
Log in

Interval-Valued Hesitant Fuzzy Stochastic Decision-Making Method Based on Regret Theory

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Different studies show that human beings are usually limited rational, their regret aversion behavior is playing an important role in the process of stochastic decision-making. However, such psychological behavior is neglected in current studies. The interval-valued hesitant fuzzy sets can more effectively depict the uncertain information than hesitant fuzzy sets. Therefore, we propose an interval-valued hesitant fuzzy stochastic decision-making approach based on group satisfaction degree and regret theory. Firstly, based on the score and variance function, a novel group satisfaction degree is defined, which can fully reflect the overall level and group divergence. Secondly, the attribute weights optimization model based on the group satisfaction degree and the deviation of attribute values is constructed to obtain the weight vector of attributes. Then, the regret value and the rejoice value are obtained by the novel regret-rejoice function, and the alternatives are ranked according to the total psychological perception values of the decision maker. Finally, we illustrated the application of the developed method with an emergency decision-making problem. Sensitivity and comparative analyses are implemented to demonstrate the superiority, stability, and validity of the proposed method based on regret theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wei, G., Alsaadi, F.E., Hayat, T., Alsaedi, A.: Picture 2-tuple linguistic aggregation operators in multiple attribute decision making. Soft. Comput. 22(3), 989–1002 (2018)

    Article  MATH  Google Scholar 

  2. Wei, G.: Picture fuzzy cross-entropy for multiple attribute decision making problems. J. Bus. Econ. Manag. 17(4), 491–502 (2016)

    Article  MathSciNet  Google Scholar 

  3. Parreiras, R.O., Ekel, P.Y., Martini, J.S.C., Palhares, R.M.: A flexible consensus scheme for multicriteria group decision making under linguistic assessments. Inf. Sci. 180(7), 1075–1089 (2010)

    Article  Google Scholar 

  4. Pang, Q., Wang, H., Xu, Z.: Probabilistic linguistic term sets in multi-attribute group decision making. Inf. Sci. 369, 128–143 (2016)

    Article  Google Scholar 

  5. Wei, G., Gao, H., Wei, Y.: Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. Int. J. Intell. Syst. 33(7), 1426–1458 (2018)

    Article  Google Scholar 

  6. Wei, G.: Approaches to interval intuitionistic trapezoidal fuzzy multiple attribute decision making with incomplete weight information. Int. J. Fuzzy Syst. 17(3), 484–489 (2015)

    Article  MathSciNet  Google Scholar 

  7. Şahin, R., Liu, P.: Maximizing deviation method for neutrosophic multiple attribute decision making with incomplete weight information. Neural Comput. Appl. 27(7), 2017–2029 (2016)

    Article  Google Scholar 

  8. Tang, X., Wei, G., Gao, H.: Models for multiple attribute decision making with interval-valued pythagorean fuzzy muirhead mean operators and their application to green suppliers selection. Informatica 30(1), 153–186 (2019)

    Article  Google Scholar 

  9. Wang, L., Wang, Y.M., Martínez, L.: A group decision method based on prospect theory for emergency situations. Inf. Sci. 418, 119–135 (2017)

    Article  Google Scholar 

  10. Li, M.Y., Cao, P.P.: Extended TODIM method for multi-attribute risk decision making problems in emergency response. Comput. Ind. Eng. 135, 1286–1293 (2019)

    Article  Google Scholar 

  11. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  12. Atanassov, K.T., Rangasamy, P.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MATH  Google Scholar 

  13. Miyamoto, S.: Fuzzy multisets and their generalizations. In: Workshop on membrane computing, pp. 225–235 (2000)

    Google Scholar 

  14. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)

    MATH  Google Scholar 

  15. Chen, N., Xu, Z., Xia, M.: Correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis. Appl. Math. Model. 37(4), 2197–2211 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bai, Z.Y.: Distance similarity measures for interval-valued hesitant fuzzy sets and their application in multicriteria decision making. J. Decis. Syst. 22(3), 190–201 (2013)

    Article  Google Scholar 

  17. Gitinavard, H., Mousavi, S.M., Vahdani, B.: A new multi-criteria weighting and ranking model for group decision-making analysis based on interval-valued hesitant fuzzy sets to selection problems. Neural Comput. Appl. 27(6), 1593–1605 (2016)

    Article  Google Scholar 

  18. Yu, Q., Hou, F., Du, Y.: Interval-valued hesitant fuzzy bonferroni mean operators and their application to multiple attribute decision making. Oper. Res. Manag. Sci. 26(9), 13–20 (2017). (in Chinese)

    Google Scholar 

  19. Gitinavard, H., Ghaderi, H., Pishvaee, M.S.: Green supplier evaluation in manufacturing systems: a novel interval-valued hesitant fuzzy group outranking approach. Soft. Comput. 22(19), 6441–6460 (2018)

    Article  Google Scholar 

  20. Hu, M., Lan, J., Wang, Z.: A distance measure, similarity measure and possibility degree for hesitant interval-valued fuzzy sets. Comput. Ind. Eng. 137, 106088 (2019)

    Article  Google Scholar 

  21. Narayanamoorthy, S., Geetha, S., Rakkiyappan, R., Joo, Y.H.: Interval-valued intuitionistic hesitant fuzzy entropy based VIKOR method for industrial robots selection. Expert Syst. Appl. 121, 28–37 (2019)

    Article  Google Scholar 

  22. Wang, J.Q., Peng, J.J., Zhang, H.Y., Chen, X.H.: Outranking approach for multi-criteria decision-making problems with hesitant interval-valued fuzzy sets. Soft. Comput. 23(2), 419–430 (2019)

    Article  MATH  Google Scholar 

  23. Simon, H.A.: Effects of increased productivity upon the ratio of urban to rural population. Economet. J. Economet. Soc. 15, 31–42 (1947)

    Article  MATH  Google Scholar 

  24. Bell, D.E.: Regret in decision making under uncertainty. Operations research 30(5), 961–981 (1982)

    Article  MATH  Google Scholar 

  25. Kahneman, D., & Tversky, A. (2013). Prospect theory: An analysis of decision under risk. In: Handbook of the fundamentals of financial decision making: part I. pp. 99–127

  26. Wang, Y., Wang, J.Q., Wang, T.L.: Fuzzy stochastic multi-criteria decision-making methods with interval neutrosophic probability based on regret theory. J. Intell. Fuzzy Syst. 19, 1–14 (2018)

    Google Scholar 

  27. Peng, X., Yang, Y.: Algorithms for interval-valued fuzzy soft sets in stochastic multi-criteria decision making based on regret theory and prospect theory with combined weight. Appl. Soft Comput. 54, 415–430 (2017)

    Article  Google Scholar 

  28. Lin, Y., Wang, Y.M., Chen, S.Q.: Hesitant fuzzy multiattribute matching decision making based on regret theory with uncertain weights. Int. J. Fuzzy Syst. 19(4), 955–966 (2017)

    Article  MathSciNet  Google Scholar 

  29. Qu, G., Li, T., Zhao, X., Qu, W., An, Q., Yan, J.: Dual hesitant fuzzy stochastic multiple attribute decision making method based on regret theory and group satisfaction degree. Int. J. Fuzzy Syst. 35, 1–10 (2018)

    Google Scholar 

  30. Chen, N., Xu, Z., Xia, M.: Interval-valued hesitant preference relations and their applications to group decision making. Knowl.-Based Syst. 37(2), 528–540 (2013)

    Article  Google Scholar 

  31. Farhadinia, B.: Information measures for hesitant fuzzy sets and interval-valued hesitant fuzzy sets. Inf. Sci. 240(10), 129–144 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhou, L., Merigó, J.M., Chen, H., Liu, J.: The optimal group continuous logarithm compatibility measure for interval multiplicative preference relations based on the COWGA operator. Inf. Sci. 328, 250–269 (2016)

    Article  MATH  Google Scholar 

  33. Li Wenhua. (2007). Study of the Theory & Methodology of Interval-valued symbolic data analysis with Application to Finance. Ph.D. Dissertation, Tianjin University. (in Chinese)

  34. Loomes, G., Sugden, R.: Regret theory: an alternative theory of rational choice under uncertainty. Econ. J. 92(368), 805–824 (1982)

    Article  Google Scholar 

  35. Zhang, S., Zhu, J., Liu, X., Chen, Y.: Regret theory-based group decision-making with multidimensional preference and incomplete weight information. Inform. Fus. 31, 1–13 (2016)

    Article  Google Scholar 

  36. Liu, X., Zhu, J., Zhang, S.: Hesitant fuzzy stochastic multiple attribute decision making method based on regret theory and group satisfaction degree. Chin. J. Manag. Sci. 10, 171–178 (2017). (in Chinese)

    Google Scholar 

  37. Xu, Z., Zhang, X.: Hesitant fuzzy multi-attribute decision making based on TOPSIS with incomplete weight information. Knowl.-Based Syst. 52, 53–64 (2013)

    Article  Google Scholar 

  38. Zhu, L., Zhu, C., Zhang, X.: Hesitant fuzzy risk multi-attribute decision making method based on prospect theory. Stat. Decis. 17, 68–71 (2014). (in Chinese)

    Google Scholar 

  39. Garai, A., Roy, T.K.: Multi-objective optimization of cost-effective and customer-centric closed-loop supply chain management model in T-environment. Soft Comput. 24, 1–24 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editors and the anonymous reviewers for their constructive comments and insightful suggestions that have improved the quality of this paper. The paper was supported by the National Natural Science Foundation of China (No. 61773123, No. 71801050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Ming Wang.

Appendices

Appendix A

Proof of Proposition 3.1.


(P.3.1.1) \(0 \le \varphi (\tilde{h}) = \frac{{s(\tilde{h})}}{{1 + v(\tilde{h})}} \le s(\tilde{h}) \le 1\)


(P.3.1.2) If \(\tilde{h} = \left\{ {\left[ {\gamma^{L} ,\gamma^{U} } \right]} \right\}\), then \(s(\tilde{h}) = \frac{1}{2}(\gamma^{L} + \gamma^{U} )\), \(v(\tilde{h}) = \frac{{(\gamma^{L} - \gamma^{U} )^{2} }}{12}\). Thus, we can obtain \(\varphi (\tilde{h}) = \frac{{6(\gamma^{L} + \gamma^{U} )}}{{12 + (\gamma^{L} - \gamma^{U} )^{2} }}\).


(P.3.1.3) To prove the property, we only need to prove that \(v(\tilde{h}) = v(\tilde{h}^{c} )\).

Based on the complement transformation, the following equation holds:

$$\begin{aligned} v\left( {\tilde{h}^{c} } \right) & = \frac{1}{{3l_{{\tilde{h}}} }}\sum\limits_{i = 1}^{{l_{{\tilde{h}}} }} {\left[ {\left( {1 - \gamma_{i}^{U} } \right)^{2} + \left( {1 - \gamma_{i}^{L} } \right)^{2} + \left( {1 - \gamma_{i}^{U} } \right) \times \left( {1 - \gamma_{i}^{L} } \right)} \right]} - \frac{1}{{4l_{{\tilde{h}}}^{2} }}\left[ {\sum\limits_{i = 1}^{{l_{{\tilde{h}}} }} {\left( {1 - \gamma_{i}^{U} } \right) + \left( {1 - \gamma_{i}^{L} } \right)} } \right]^{2} \\ & = \frac{1}{{3l_{{\tilde{h}}} }}\sum\limits_{i = 1}^{{l_{{\tilde{h}}} }} {\left[ {3 - 3\gamma_{i}^{L} - 3\gamma_{i}^{U} + \left( {\gamma_{i}^{L} } \right)^{2} + \left( {\gamma_{i}^{U} } \right)^{2} + \gamma_{i}^{L} \times \gamma_{i}^{U} } \right]} - \frac{1}{{4l_{{\tilde{h}}}^{2} }}\left[ {\sum\limits_{i = 1}^{{l_{{\tilde{h}}} }} {\left( {2 - \gamma_{i}^{L} - \gamma_{i}^{U} } \right)} } \right]^{2} = v(\tilde{h}) \\ \end{aligned}$$

Then, \(\frac{{\varphi (\tilde{h})}}{{\varphi (\tilde{h}^{c} )}} = \frac{{\frac{{s(\tilde{h})}}{{1 + v(\tilde{h})}}}}{{\frac{{s(\tilde{h}^{c} )}}{{1 + v(\tilde{h}^{c} )}}}} = \frac{{s(\tilde{h})}}{{s(\tilde{h}^{c} )}}\).

Therefore, we have proved it is valid.

The Process of solving Model 2

In order to ensure that the method for determining the attribute weights is easily understood in Model 2, the following calculating process is provided.

Model 2

$$\begin{aligned} & \text{max}\,f_{i}^{t} (w) = \frac{1}{2}\sum\limits_{j = 1}^{n} {\sum\limits_{t = 1}^{g} {\sum\limits_{i = 1}^{m} {\sum\limits_{q = 1}^{m} {\left( {\left| {d(\tilde{h}_{ij}^{t} ,\tilde{1}) - d(\tilde{h}_{qj}^{t} ,\tilde{1})} \right| + \frac{{s(\tilde{h}_{ij}^{t} )}}{{1 + v(\tilde{h}_{ij}^{t} )}}} \right)} } } w_{j} } \\ & s.t.\sum\limits_{j = 1}^{n} {w_{j}^{2} } = 1,\quad 0 \le w_{j} \le 1,\quad j = 1,2, \ldots ,n \\ \end{aligned}$$

To obtain the optimal attribute weight vector, we construct the Lagrange function to solve the model as follows:

$$L(w,\lambda ) = \frac{1}{2}\sum\limits_{j = 1}^{n} {\sum\limits_{t = 1}^{g} {\sum\limits_{i = 1}^{m} {\sum\limits_{q = 1}^{m} {\left( {\left| {d(\tilde{h}_{ij}^{t} ,\tilde{1}) - d(\tilde{h}_{qj}^{t} ,\tilde{1})} \right| + \frac{{s(\tilde{h}_{ij}^{t} )}}{{1 + v(\tilde{h}_{ij}^{t} )}}} \right)} } } w_{j} } + \frac{1}{2}\lambda \left(\sum\limits_{j = 1}^{n} {w_{j}^{2} - 1} \right)$$

where \(\lambda\) is the Lagrange multiplier.

Then, \(L(w,\lambda )\) is differentiated with respect to \(w_{j} (j = 1,2, \cdots ,n)\) and \(\lambda\), then we can obtain the following equations:

$$\frac{\partial L(w,\lambda )}{{\partial w_{j} }} = \frac{1}{2}\sum\limits_{t = 1}^{g} {\sum\limits_{i = 1}^{m} {\sum\limits_{q = 1}^{m} {\left( {\left| {d(\tilde{h}_{ij}^{t} ,\tilde{1}) - d(\tilde{h}_{qj}^{t} ,\tilde{1})} \right| + \frac{{s(\tilde{h}_{ij}^{t} )}}{{1 + v(\tilde{h}_{ij}^{t} )}}} \right)} } } + \lambda w_{j} = 0$$
$$\frac{\partial L(w,\lambda )}{\partial \lambda } = \frac{1}{2}\left( {\sum\limits_{j = 1}^{n} {w_{j}^{2} - 1} } \right) = 0$$

Then, calculating the above equations, the optimal attribute weights are obtained as follows:

$$w_{j} = \frac{{\sum\nolimits_{t = 1}^{g} {\sum\nolimits_{i = 1}^{m} {\sum\nolimits_{q = 1}^{m} {\left( {\left| {d(\tilde{h}_{ij}^{t} ,\tilde{1}) - d(\tilde{h}_{qj}^{t} ,\tilde{1})} \right| + \frac{{s(\tilde{h}_{ij}^{t} )}}{{1 + v(\tilde{h}_{ij}^{t} )}}} \right)} } } }}{{\sqrt {\sum\nolimits_{j = 1}^{n} {\left( {\sum\nolimits_{t = 1}^{g} {\sum\nolimits_{i = 1}^{m} {\sum\nolimits_{q = 1}^{m} {\left( {\left| {d(\tilde{h}_{ij}^{t} ,\tilde{1}) - d(\tilde{h}_{qj}^{t} ,\tilde{1})} \right| + \frac{{s(\tilde{h}_{ij}^{t} )}}{{1 + v(\tilde{h}_{ij}^{t} )}}} \right)} } } } \right)} }^{2} }}$$

Normalize \(w_{j}\), have

$$w_{j} = \frac{{\left( {\sum\nolimits_{t = 1}^{g} {\sum\nolimits_{i = 1}^{m} {\frac{{s(\tilde{h}_{ij}^{t} )}}{{1 + v(\tilde{h}_{ij}^{t} )}}} } + \sum\nolimits_{t = 1}^{g} {\sum\nolimits_{i = 1}^{m} {\sum\nolimits_{q = 1}^{m} {\left| {d(\tilde{h}_{ij}^{t} ,\tilde{1}) - d(\tilde{h}_{qj}^{t} ,\tilde{1})} \right|} } } } \right)}}{{\sum\nolimits_{j = 1}^{n} {\left( {\sum\nolimits_{t = 1}^{g} {\sum\nolimits_{i = 1}^{m} {\frac{{s(\tilde{h}_{ij}^{t} )}}{{1 + v(\tilde{h}_{ij}^{t} )}} + \sum\nolimits_{t = 1}^{g} {\sum\nolimits_{i = 1}^{m} {\sum\nolimits_{q = 1}^{m} {\left| {d(\tilde{h}_{ij}^{t} ,\tilde{1}) - d(\tilde{h}_{qj}^{t} ,\tilde{1})} \right|} } } } } } \right)} }},\quad j = 1,2, \ldots ,n$$

Appendix B

Table 7 shows the meaning of all abbreviations in the paper to help the readers understand better.

Table 7 The list of abbreviations and parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, W., Wang, YM. Interval-Valued Hesitant Fuzzy Stochastic Decision-Making Method Based on Regret Theory. Int. J. Fuzzy Syst. 22, 1091–1103 (2020). https://doi.org/10.1007/s40815-020-00830-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00830-z

Keywords

Navigation