Skip to main content
Log in

Joint Production and Pricing Strategy in Robust Model of Crowdfunding Considering Uncertain Preference

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

While our society began to recognize the importance to capture the uncertain preference of people, the existing literature has confined its research work only under a static preference framework in crowdfunding. This paper represents the attempt to incorporate people uncertain preference on product quality and attributes into crowdfunding for production and pricing. More specifically, with describe the uncertain preference of supporters on product quality with robust optimization method, the distribution of the uncertain preference in the worst cases is solved firstly and the corresponding optimal product quality is investigated. Then, according to the different preference of supporters for product attributes, the differentiated pricing strategy is considered in the second stage. Finally, the model is extended to the situation that the third-party platform is participation to illustrate the effectiveness of platform on sharing economy. The research provides the sponsor with the quality level of product production and the corresponding optimal prices for different product quality and attributes. And the results show that: (i) It is optimal for sponsor to increase the unit price of the taste product and not to decide the product quality at the early stage when the risk of investors uncertain preference on product quality is greater than a certain value; (ii) Compare with the low effort level of the platform, the price of the taste product is lower when the platform effort level is high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bi, G.B., Geng, B.T., Liu, L.D.: On the fixed and flexible funding mechanisms in reward-based crowdfunding. Eur. J. Oper. Res. 279(1), 168–183 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Herv, F., Manth, E., Sannajust, A., Schwienbacher, A.: Determinants of individual investment decisions in investment-based crowdfunding. J. Bus. Finan. Acc. 5(6), 762–783 (2019)

    Article  Google Scholar 

  3. Irwin, D., Scott, J.M.: Barriers faced by SMEs in raising bank finance. Int. J. Entrepreneurial Behav. Res. 16(3), 245–259 (2010)

    Article  Google Scholar 

  4. Ferdinand, T., Alexander, H., Carolin, B., Alexander, B., Sascha, K.: Following the crowd—does crowdfunding affect venture capitalists selection of entrepreneurial ventures? J. Small Bus. Manage. 57(4), 1378–1398 (2019)

    Article  Google Scholar 

  5. Hildebrand, T., Manju, P.A., Rocholld, C.: Adverse incentives in crowdfunding. Manage. Sci. 63(3), 587–608 (2017)

    Article  Google Scholar 

  6. Bi, S., Liu, Z., Usman, K.: The influence of online information on investing decisions of rewardbased crowdfunding. J. Bus. Res. 71, 10–18 (2017)

    Article  Google Scholar 

  7. Ben-Tal, A., Nemirovski, A.: Robust optimization. Math. Oper. Res. 23(4), 769–805 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain liner programs. Oper. Res. Lett. 25(1), 1–13 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kleeman, K., Voss, G.G., Riede, r K.: Under paid innovators: the commercial utilization of consumer work through crowdsourcing. Sci. Technol. Innov. Stud. 4(1), 5–26 (2011)

    Google Scholar 

  10. Israa, A.M.A., Hebatallah, G.: The effect of microfinance on income inequality: perspective of developing countries. J. Econ. Manage. 35(1), 40–62 (2019)

    Google Scholar 

  11. Kim, H.J., Lee, J., Chae, D.K., Kim, S.W.: Crowdsourced promotions in doubt: analyzing effective crowdsourced promotions. Inf. Sci. 432, 185–198 (2018)

    Article  Google Scholar 

  12. Tomczak, A., Brem, A.: A conceptualized investment model of crowdfunding. Venture Cap. 15(4), 335–359 (2013)

    Article  Google Scholar 

  13. Moonhee, C., Gawon, K.: A cross-cultural comparative analysis of crowdfunding projects in the United States and South Korea. Comput. Hum. Behav. 72, 312–320 (2017)

    Article  Google Scholar 

  14. Lukkarinen, A., Teich, J.E., Wallenius, H., Wallenius, J.: Success drivers of online equity crowdfunding campaigns. Decis. Support Syst. 87, 26–38 (2016)

    Article  Google Scholar 

  15. Allison, T.H., Davis, B.C., Short, J.C., Webb, J.M.: Crowdfunding in a prosocial microlending environment: examining the role of intrinsic versus extrinsic cues. Entrepreneurship Theory Pract. 39(1), 53–73 (2015)

    Article  Google Scholar 

  16. Belleflamme, P., Lambert, T., Schwienbacher, A.: Crowdfunding: tapping the right crowd. J. Bus. Ventur. 29(5), 585–609 (2014)

    Article  Google Scholar 

  17. Frydrych, D., Bock, A.J., Kinder, T., Benjamin, K.: Exploring entrepreneurial legitimacy in reward-based crowdfunding. Venture Cap. 16(3), 247–269 (2014)

    Article  Google Scholar 

  18. Hyeog-In, K., Lee, S., Na, Y.: Success and failure case analysis of crowdfunding: focused on community art project. J. Korea Contents Assoc. 14(7), 125–136 (2014)

    Article  Google Scholar 

  19. Beier, M., Wagner, K.: Crowdfunding success of tourism projects-evidence from Switzerland. In: ENTER eTourism Conference 2015, At Lugano, Volume: 22.

  20. Bernstein, S., Korteweg, A., Laws, K.: Attracting early-stage investors: evidence from a randomized field experiment. J. Finance 72(2), 509–538 (2017)

    Article  Google Scholar 

  21. Wessel, M., Thies, F., Benlia, A.: Opening the floodgates: the implications of increasing platform openness in crowdfunding. J. Inf. Technol. 32, 344–360 (2017)

    Article  Google Scholar 

  22. Hu, M., Li, X., Shi, M.: Product and pricing decisions in crowdfunding. Mark. Sci. 34(3), 331–345 (2015)

    Article  Google Scholar 

  23. Chen, Y., Zhang, R., Liu, B.: Joint decisions on production and pricing with strategic consumers for green crowdfunding products. Int. J. Environ. Res. Public Health 14(9), 1–18 (2017)

    Article  Google Scholar 

  24. Fishburn, P.: Nonlinear Preferences and Utility Theory. The John Hopkins University Press, Baltimore (1988)

    MATH  Google Scholar 

  25. VonNeumann, J., Morgenstern, O.: The Theory of Gamesand Economic Behaviour, 2nd edn. Princeton University Press, Princeton (1947)

    Google Scholar 

  26. Savage, L.: The Foundations of Statistics. Wiley, New York (1954)

    MATH  Google Scholar 

  27. Chris, S.: Developments in non-expected utility theory: the hunt for a descriptive theory of choice under risk. J. Econ. Lit. 38(2), 332–382 (2000)

    Article  Google Scholar 

  28. Liu, W.M., Deng, T.H., Li, J.B.: Product packing and stacking under uncertainty: a robust approach. Eur. J. Oper. Res. 277, 903–917 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chang, C.M., Chang, W.J.: Robust fuzzy control with transient and steady—state performance constraints for ship fin stabilizing systems. Int. J. Fuzzy Syst. 21(2), 518–531 (2019)

    Article  MathSciNet  Google Scholar 

  30. Chen, C.C.: Annealing robust fuzzy neural networks for modeling of molecular autoregulatory feedback loop systems. Int. J. Fuzzy Syst. 10(1), 11–17 (2008)

    MathSciNet  Google Scholar 

  31. Awasthi, P., Goyal, V., Lu, B.Y.: On the adaptivity gap in two-stage robust linear optimization under uncertain packing constraints. Math. Progr. 173(1–2), 313–352 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Keeney, R.L.: Multiplicative utility functions. Oper. Res. 22(1), 22–34 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, Z.M., Xu, X.O.: Principal agent model based design and outsourcing of information value. Clust Comput 20(1), 60–79 (2017)

    Google Scholar 

  34. Scarf, H.: A Min–Max Solution of an Inventory Problem, pp. 201–209. Standford University Press, California (1958)

    Google Scholar 

  35. Constantin, P.N., Persson, L.E.: Duality and convex optimization. Convex Functions and Their Applications, pp. 255–300 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jv Wei.

Appendix

Appendix

1.1 A. Proof of Theorem 1

From Eq. (4), the excepted profit of the sponsor is given as follows:

$$\begin{aligned} \Pi _s & = p_{1}\lambda ((\theta +\alpha d)\varepsilon )\nonumber \\&+p_{2}(1-\lambda )\phi \varepsilon e-m(\varepsilon -Q)^{+}+v(Q-\varepsilon )^{+}-kQ, \end{aligned}$$
(A.1)

For Fig. 1a, the intersection point is \(\varepsilon _1=0\) and the cut-off point is \(\varepsilon _2=u+\frac{\sigma ^2}{u-\varepsilon _1}\), and \(\varepsilon _2>Q\), so \(Q<\frac{u^2+\sigma ^2}{2u}\). Therefore, the followings equations can be written according the tangent properties as:

$$\begin{aligned} \left\{ \begin{array}{lll} m(\varepsilon _1)=\Pi _s(\varepsilon _1),&{}&{} m(\varepsilon _1)'=\Pi _s(\varepsilon _1)',\\ m(\varepsilon _2)=\Pi _s(\varepsilon _2),&{}&{} m(\varepsilon _2)'=\Pi _s(\varepsilon _2)'.\\ \end{array}\right. \end{aligned}$$
(A.2)

By solving the Eq. (A.2), the following equations can gotten as

$$\begin{aligned} \left\{ \begin{array}{lll} x_1+x_2\varepsilon _2+x_3\varepsilon _2^2=p_1\lambda (\theta +\alpha d)\varepsilon _2+p_2(1-\lambda )\phi e\varepsilon _2-m(\varepsilon _2-Q)-kQ,\\ x_2+2x_3\varepsilon _1=p_1\lambda (\theta +\alpha d)+p_2(1-\lambda )\phi e-m,\\ x_1=-(k-v)Q.\\ \end{array}\right. \end{aligned}$$

and

$$\begin{aligned} \left\{ \begin{array}{lll} x_1=-(k-v)Q,\\ x_2=p_1\lambda (\theta +\alpha d)+p_2(1-\lambda )\phi e-m+\frac{(2m-k-v)Qu}{u^2+\sigma ^2},\\ x_3=\frac{-(m-k)Qu^2}{(u^2+\sigma ^2)^2}.\\ \end{array}\right. \end{aligned}$$
(A.3)

Taking the Eq. (A.3) into Eq. (A.1), the excepted profit of the sponsor is written as

$$\begin{aligned} \Pi _s= & {} \left[p_{1}\lambda ((\theta +\alpha d)\varepsilon )+p_{2}(1-\lambda )\phi \varepsilon e-m \right]u\\&-(k-v)Q+\frac{(m-v)u^2Q}{u^2+\sigma ^2}. \end{aligned}$$

Therefore, the Eq. (10) is proved.

The detail proof of Theorem 1 is given as following. According to Eq. (18), the expected profit function under the worst distribution is obtained as shown in the following:

(1) When \(Q<\frac{u^2+\sigma ^2}{2u}\)

$$\begin{aligned} \underline{\Pi _s^2}(Q,p_2)= & {} \left[p_1\lambda (\theta +\alpha d)+p_2(1-\lambda )\phi e-m \right]u\nonumber \\&-(k-v)Q+\frac{(m-v)u^2Q}{u^2+\sigma ^2}. \end{aligned}$$
(A.4)
$$\begin{aligned} \frac{\partial \underline{\Pi _s^2}(Q,p_2)}{\partial Q}= & {} -(k-v)+\frac{(m-v)u^2}{u^2+\sigma ^2}. \end{aligned}$$
(A.5)

From Eq. (A.5), when \(\frac{u}{\sigma }=\sqrt{\frac{k-v}{m-k}},(m>k>v)\), \( \frac{\partial \underline{\Pi _s^2}(Q,p_2)}{\partial Q}=0\). The profit function \( \underline{\Pi _s^2}(Q,p_2)\) is a monotonically increasing function of Q when \(\frac{u}{\sigma }<\sqrt{\frac{k-v}{m-k}}\), and \( \underline{\Pi _s^2}(Q,p_2)\) is a monotonically decreasing function of Q when \(\frac{u}{\sigma }\ge \sqrt{\frac{k-v}{m-k}}\). Therefore, the optimal product production quality level can be expressed by the following formula

$$\begin{aligned} Q_1^*=\left\{ \begin{array}{llll} 0,&{}&{} \text{if} \;\frac{u}{\sigma }<\sqrt{\frac{k-v}{m-k}}, \\ \frac{u^2+\sigma ^2}{2u},&{}&{} \text{if}\; \frac{u}{\sigma }\ge \sqrt{\frac{k-v}{m-k}}.\\ \end{array}\right. \end{aligned}$$
(A.6)

(2) When \(Q\ge \frac{u^2+\sigma ^2}{2u}\)

$$\begin{aligned} \underline{\Pi _s^1}(Q,p_2)= & {} \left[p_1\lambda (\theta +\alpha d)+p_2(1-\lambda )\phi e-\frac{v+m}{2} \right]u\nonumber \\&-(k-v)Q+\frac{m-v}{2} \left(\sqrt{(Q-u)^2+\sigma ^2}-Q \right). \end{aligned}$$
(A.7)
$$\begin{aligned} \frac{\partial \underline{\Pi _s^1}(Q,p_2)}{\partial Q}= & {} \frac{m+v-2k}{2}-\frac{(m-v)(Q-u)}{2\sqrt{(Q-u)^2+\sigma ^2}}, \end{aligned}$$
(A.8)
$$\begin{aligned} \frac{\partial ^2 \underline{\Pi _s^1}(Q,p_2)}{\partial Q^2}= & {} \frac{-(m-v\sigma ^2)}{\left[(Q-u)^2+\sigma ^2 \right]^{\frac{3}{2}}}<0. \end{aligned}$$
(A.9)

Since the second derivative of the expected profit function is less than zero, so \(\underline{\Pi _s}(Q,p_2)\) is a concave function, and when \( \frac{\partial \underline{\Pi _s^1}(Q,p_2)}{\partial Q}=0\), we can get \(Q_2^*=u+\frac{\sigma }{2}(\sqrt{\frac{m-k}{k-v}}-\sqrt{\frac{k-v}{m-k}})\). Combining the condition \(Q\ge \frac{u^2+\sigma ^2}{2u}\), we can get

$$\begin{aligned} Q_2^*=\left\{ \begin{array}{llll} \frac{u^2+\sigma ^2}{2u},&{}&{} \text{if} \; \frac{u}{\sigma }<\sqrt{\frac{k-v}{m-k}}, \\ u+\frac{\sigma }{2} \left(\sqrt{\frac{m-k}{k-v}}- \sqrt{\frac{k-v}{m-k}}\right),&{}&{} \text{if} \; \frac{u}{\sigma }\ge \sqrt{\frac{k-v}{m-k}}.\\ \end{array}\right. \end{aligned}$$
(A.10)

When \(Q=\frac{u^2+\sigma ^2}{2u}\), the piecewise function is continuous, that is \(\underline{\Pi _s^1}(Q,p_2)=\underline{\Pi _s^2}(Q,p_2)\). Therefore, combining Eqs. (A.6) and (A.10), the optimal product quality level can be written as

$$\begin{aligned} Q^*=\left\{ \begin{array}{llll} 0,&{}&{} \text{if} \; \frac{u}{\sigma }<\sqrt{\frac{k-v}{m-k}}, \\ u+\frac{\sigma }{2}(\sqrt{\frac{m-k}{k-v}}-\sqrt{\frac{k-v}{m-k}}),&{}&{} \text{if} \; \frac{u}{\sigma }\ge \sqrt{\frac{k-v}{m-k}}.\\ \end{array}\right. \end{aligned}$$
(A.11)

1.2 B. Proof of Theorem 2

(i) When \(\frac{u}{\sigma }>e \sqrt{\frac{k-v}{m-k}}\), it is always hold \(a>(1-\lambda )\phi e \sigma \sqrt{\frac{k-v}{m-k}}\), \(\overline{p_2}=\frac{a}{b}-\frac{(1-\lambda )\phi e\sigma }{b}\sqrt{\frac{k-v}{m-k}}>0\), the pricing problem in the following two situations is discussed.

(1) When \(p_2\le \overline{p_2}\), the expected profit function is \(\underline{\Pi _s^1}\):

$$\begin{aligned} \frac{\partial \underline{\Pi _s^1}}{\partial p_2}= & {} -2b p_2+a-\frac{b(p_1\lambda (\theta +\alpha d)-k)}{(1-\lambda )\phi e}, \end{aligned}$$
(B.1)
$$\begin{aligned} \frac{\partial ^2\underline{\Pi _s^1}}{\partial p_2^2}= & {} -2b<0. \end{aligned}$$
(B.2)

From the Eq. (18), we can know the expected profit function is a concave function of \(p_2\), and when \(\frac{\partial \underline{\Pi _s^1}}{\partial p_2}=0\)

$$\begin{aligned} p_{21}^*=\frac{a}{2b}-\frac{p_1\lambda (\theta +\alpha d)-k}{2(1-\lambda )\phi e}. \end{aligned}$$
(B.3)

When \(p_{21}<p_{21}^*\), the expected profit function \(\underline{\Pi _s^1}\) is a monotonically increase function of \(p_2\), and the expected profit function \(\underline{\Pi _s^1}\) is a monotonically decreasing function of \(p_2\) when \(p_{21}\ge p_{21}^*\). Therefore, when \(\sigma <\sigma _1=\left(\frac{a}{2(1-\lambda ) \phi e}+\frac{[p_1\lambda (\theta +\alpha d-k)]b}{2[(1-\lambda )(\phi e)]^2}\right)\sqrt{\frac{m-k}{k-v}}\), we get \(p_{21}^*< \overline{p_2}\), and the optimal price is \(\overline{p_2}\). When \(\sigma \ge \sigma _1=\left(\frac{a}{2(1-\lambda ) \phi e}+\frac{[p_1\lambda (\theta +\alpha d-k)]b}{2(1-\lambda )^3(\phi e)62}\right)\sqrt{\frac{m-k}{k-v}}\), we get \(p_{21}^*\ge \overline{p_2}\), and the optimal price is \(p_{21}^*\). So the optimal product price can be written as follows

$$\begin{aligned} \left\{ \begin{array}{llll} \overline{p_2},&{}&{} \text{if} \; \sigma <\sigma _1= \left(\frac{a}{2(1-\lambda ) \phi e}+\frac{[p_1\lambda (\theta +\alpha d)-k]b}{2[(1-\lambda )(\phi e)]^2} \right)\sqrt{\frac{m-k}{k-v}} , \\ p_{21}^*=\frac{a}{2b}-\frac{\left[p_1\lambda (\theta +\alpha d)-k\right]}{2(1-\lambda )\phi e} ,&{}&{} \text{if} \; \sigma \ge \sigma _1=\left(\frac{a}{2(1-\lambda ) \phi e}+\frac{[p_1\lambda (\theta +\alpha d-k)]b}{2[(1-\lambda )(\phi e)]^2}\right)\sqrt{\frac{m-k}{k-v}}.\\ \end{array}\right. \end{aligned}$$
(B.4)

(2) When \(p_2 > \overline{p_2}\), the expected profit function is \(\underline{\Pi _s^2}\):

$$\begin{aligned}&\frac{\partial \underline{\Pi _s^2}}{\partial p_2}=-2b p_2+a-\frac{b(p_1\lambda (\theta +\alpha d)-m)}{(1-\lambda )\phi e}, \end{aligned}$$
(B.5)
$$\begin{aligned}&\frac{\partial ^2\underline{\Pi _s^2}}{\partial p_2^2}=-2b<0. \end{aligned}$$
(B.6)

The expected profit function \(\underline{\Pi _s^2}\) is a concave function of \(p_2\), and when \(\frac{\partial \underline{\Pi _s^1}}{\partial p_2}=0\)

$$\begin{aligned} p_{22}^*=\frac{a}{2b}-\frac{p_1\lambda (\theta +\alpha d)-m}{2(1-\lambda )\phi e}. \end{aligned}$$
(B.7)

When \(p_{22}<p_{22}^*\), the expected profit function \(\underline{\Pi _s^2}\) is a monotonically increase function of \(p_2\), and the expected profit function \(\underline{\Pi _s^2}\) is a monotonically decreasing function of \(p_2\) when \(p_{22}\ge p_{22}^*\). Therefore, when \(\sigma <\sigma _2= \left(\frac{a}{2(1-\lambda ) \phi e}+\frac{[p_1\lambda (\theta +\alpha d-m)]b}{2[(1-\lambda )(\phi e)]^2}\right)\sqrt{\frac{m-k}{k-v}}\), we get \(p_{22}^*< \overline{p_2}\) and the optimal price is \(p_{22}^*\). When \(\sigma \ge \sigma _2= \left(\frac{a}{2(1-\lambda ) \phi e}+\frac{[p_1\lambda (\theta +\alpha d-m)]b}{2[(1-\lambda )(\phi e)]^2}\right)\sqrt{\frac{m-k}{k-v}}\), we get \(p_{22}^*\ge \overline{p_2}\)

and the optimal product price is \(\overline{p_2}\). So the optimal price can be written as follows

$$\begin{aligned} \left\{ \begin{array}{llll} p_{22}^*=\frac{a}{2b}-\frac{[p_1\lambda (\theta +\alpha d)-m]}{2(1-\lambda )\phi e}, &{}&{} \text{if} \; \sigma <\sigma _2= \left(\frac{a}{2(1-\lambda ) \phi e}+\frac{[p_1\lambda (\theta +\alpha d-m)]b}{2[(1-\lambda )(\phi e)]^2}\right)\sqrt{\frac{m-k}{k-v}} , \\ \overline{p_2} ,&{}&{} \text{if} \; \sigma \ge \sigma _2= \left(\frac{a}{2(1-\lambda ) \phi e}+\frac{[p_1\lambda (\theta +\alpha d)-m]b}{2[(1-\lambda )(\phi e)]^2}\right)\sqrt{\frac{m-k}{k-v}}.\\ \end{array}\right. \end{aligned}$$
(B.8)

Combing Eqs. (B.4) and (B.8), the intersection of two profit functions \(\underline{\Pi _s^1}\) and \(\underline{\Pi _s^2}\) has three different cases due to the difference values of \(\sigma \). In the following Fig. 4, the graphic of the intersection is given to illustrate the optimal product price.

Fig. 4
figure 4

The expected profit of the sponsor and optimal price for taste product \(p_2\)

In Fig. 4a, \(\sigma >\sigma _1\), and the maximum value of the \(\underline{\Pi _s^1}\) is get at \(p=p_{21}^*\) and the maximum value of the \(\underline{\Pi _s^2}\) is get at \(p=\overline{p_2}\). The two profit functions are continuous at \(p=\overline{p_2}\) and \(\underline{\Pi _s^1}(p_{21}^*)>\underline{\Pi _s^2}(\overline{p_2})\), therefore the optimal price is \(p=p_{21}^*\). In Fig. 4b, \(\sigma \le \sigma _2\), and the maximum value of the \(\underline{\Pi _s^1}\) is get at \(p=\overline{p_2}\) and the maximum value of the \(\underline{\Pi _s^2}\) is get at \(p=p_{22}^*\). The two profit functions are continuous at \(p=\overline{p_2}\) and \(\underline{\Pi _s^2}(p_{22}^*)>\underline{\Pi _s^1}(\overline{p_2})\), therefore the optimal price is \(p=p_{22}^*\). In the situation of Fig. 2c, we need to compare the values of \(\underline{\Pi _s^1}(p_{21}^*)\), \(\underline{\Pi _s^2}(p_{22}^*)\). When \(\underline{\Pi _s^1}(p_{21}^*)= \underline{\Pi _s^2}(p_{22}^*)\), we get the followings

$$\begin{aligned}\underline{\Pi _s^1}(p_{21}^*)-\underline{\Pi _s^2}(p_{22}^*)&= \frac{b(m-k)(2p_1\lambda (\theta +\alpha d)-k-m)}{4((1-\lambda )\phi e)^2}\nonumber \\&\quad +\frac{a(m-k)}{2(1-\lambda )\phi e}-\sigma \sqrt{(m-k)(k-v)}=0. \end{aligned}$$
(B.9)

Therefore we can get

$$\begin{aligned} \sigma _3= & {} \left( \frac{a}{2(1-\lambda )\phi e}+\frac{bp_1\lambda (\theta +\alpha d)}{2((1-\lambda )\phi e)^2}\right. \nonumber \\&\left. -\frac{b(k+m)}{(2(1-\lambda )\phi e)^2}\right) \sqrt{\frac{m-k}{k-v}}. \end{aligned}$$
(B.10)

When \(\sigma \le \sigma _3\), we get \(\underline{\Pi _s^1}(p_{21}^*)-\underline{\Pi _s^2}(p_{22}^*)>0\), the optimal price is \(p_{21}^*\). And when \(\sigma >\sigma _3\), \(\underline{\Pi _s^1}(p_{21}^*)-\underline{\Pi _s^2}(p_{22}^*)<0\), the optimal price is \(p_{22}^*\). By comparing the values of \(\sigma _1\), \(\sigma _2\) and \(\sigma _3\), we can find that \(\sigma _1>\sigma _3>\sigma _2\). Therefore the optimal price is given as

$$\begin{aligned} p_2^*=\left\{ \begin{array}{llll} p_{21}^*,&{}&{} \text{if} \;\sigma <\sigma _3\\ p_{22}^*,&{}&{} \text{if} \;\sigma \ge \sigma _3.\\ \end{array}\right. \end{aligned}$$
(B.11)

Combining Eqs. (B.4), (B.8) and (B.11), we analysis the price in the following two as

  1. (1)

    When \(\sigma <\sigma _3\), the optimal price of the product is \(p_{21}^*\). If \( \frac{u}{\sigma }\ge \sqrt{\frac{k-v}{m-k}}\), we get \( \sigma \le \sigma _1\), \(Q^*=\frac{a-bp_2}{(1-\lambda )\phi e}+\frac{\sigma }{2} \left(\sqrt{\frac{m-k}{k-v}}-\sqrt{\frac{k-v}{m-k}}\right)\). If \( \sigma >\sigma _1\), \(Q^*=0\), this result does not match the condition \(\sigma <\sigma _3\). Therefore, the optimal price and initial quality level of the product is \(p=p_{21}^*\), \(Q^*=\frac{a-bp_2}{(1-\lambda )\phi e}+\frac{\sigma }{2}(\sqrt{\frac{m-k}{k-v}}-\sqrt{\frac{k-v}{m-k}})\).

  2. (2)

    When \(\sigma \ge \sigma _3\), the optimal price of the product is \(p_{21}^*\). If \( \frac{u}{\sigma }\ge \sqrt{\frac{k-v}{m-k}}\), we get \(\sigma \le \sigma _2\), which is not match the condition \(\sigma \ge \sigma _3(\sigma _3>\sigma _2)\). Therefore, when \( \frac{u}{\sigma }< \sqrt{\frac{k-v}{m-k}}\), we get the optimal price and initial quality of the product is \(p=p_{22}^*\),\(Q^*=0\).

Combining the above analysis, the price and initial quality of the product is given as follows

$$\begin{aligned} \left\{ \begin{array}{cccc} p_{21}^*=\frac{a}{2b}-\frac{[p_1\lambda (\theta +\alpha d)-k]}{2(1-\lambda )\phi e},&{} Q^*=\frac{a-bp_2}{(1-\lambda )\phi e}+\frac{\sigma }{2} \left(\sqrt{\frac{m-k}{k-v}}-\sqrt{\frac{k-v}{m-k}}\right),&{} \text{if} \;\sigma <\sigma _3,\\ p_{22}^*=\frac{a}{2b}-\frac{p_1\lambda (\theta +\alpha d)-m}{2(1-\lambda )\phi e},&{}Q^*=0,&{} \text{if} \;\sigma \ge \sigma _3.\\ \end{array}\right. \end{aligned}$$
(B.12)

From the Eq. (B.12), when the supporter product quality preference uncertainty risk is greater than \(\sigma _3\), the company will chooses to increase the product price and not determine the production quality of the product in advance to avoid the risk.

(ii) When \(\frac{u}{\sigma }<e \sqrt{\frac{k-v}{m-k}}\), it hold \(\overline{p_2}=\frac{a}{b}-\frac{(1-\lambda )\phi e\sigma }{b}\sqrt{\frac{k-v}{m-k}}\le 0\), the sponsor will not provide the product with taste attributes, the product quality level is \(Q^*\) in Theorem 1 and the price is \(p_1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J. Joint Production and Pricing Strategy in Robust Model of Crowdfunding Considering Uncertain Preference. Int. J. Fuzzy Syst. 22, 1342–1355 (2020). https://doi.org/10.1007/s40815-020-00838-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00838-5

Keywords

Navigation