Skip to main content
Log in

Bayesian Method for the Generalized Exponential Model Using Fuzzy Data

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper focuses on Bayesian inference for the parameters of the generalized exponential model under asymmetric and symmetric loss functions when the observations are described in terms of fuzzy numbers. First, a generalized likelihood function based on fuzzy data is derived. Then, considering general entropy, linear exponential and squared error loss functions, the Bayes estimates of the parameters are obtained. Since Bayes estimates could not be expressed in closed forms, Metropolis–Hasting samplers are used to compute the approximate Bayes estimates. For comparison purposes, the maximum likelihood estimates of the parameters are also computed. The proposed inferences are illustrated using three real-world examples. The numerical simulation results demonstrate the superiority of the Bayesian method over the maximum likelihood procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gupta, R.D., Kundu, D.: Generalized exponential distributions. Aust. N. Z. J. Stat. 41, 173–188 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Nekoukhou, V., Alamatsaz, M.H., Bidram, H.: A discrete analog of the generalized exponential distribution. Commun. Stat. Theory Methods 41(11), 2000–2013 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Nekoukhou, V., Alamatsaz, M.H., Bidram, H.: Discrete generalized exponential distribution of a second type. Statistics 47(4), 876–887 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Kundu, D., Gupta, R.D.: Generalized exponential distribution: Bayesian estimations. Comput. Stat. Data Anal. 52(4), 1873–1883 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Dey, S.: Bayesian estimation of the shape parameter of the generalised exponential distribution under different loss functions. Pak. J. Stat. Oper. Res. 6(2), 163–174 (2010)

    Google Scholar 

  6. Khan, M.A., Hakkak, A.A., Kumar, V.: Parameter estimation of generalized exponential distribution using Markov Chain Monte Carlo method for informative set of priors. Int. Refereed Res. J. 3(2), 96–106 (2012)

    Google Scholar 

  7. Peng, X., Yan, Z.: Bayesian estimation for generalized exponential distribution based on progressive type-I interval censoring. Acta Mathematicae Applicatae Sinica 29(2), 391–402 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Kim, C., Han, K.: Bayesian estimation of generalized exponential distribution under progressive first failure censored sample. Appl. Math. Sci. 9(41), 2037–2047 (2015)

    Google Scholar 

  9. Mohie El-Din, M.M.M., Amein, M.M., Shafay, A.R., Mohamed, S.: Estimation of generalized exponential distribution based on an adaptive progressively type-II censored sample. J. Stat. Comput. Simul. 87(7), 1292–1304 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Chacko, M., Muraleedharan, L.: Inference based on k-record values from generalized exponential distribution. Statistica 78(1), 37–56 (2018)

    Google Scholar 

  11. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  12. Pak, A.: Statistical inference for the parameter of Lindley distribution based on fuzzy data. Braz. J. Probab. Stat. 31(3), 502–515 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Viertl, R.: Statistical Methods for Fuzzy Data. Wiley, New York (2011)

    MATH  Google Scholar 

  14. Khoolenjani, N.B., Chatrabgoun, O.: Estimating the parameters of lifetime distributions under progressively type-II censoring from fuzzy data. J. Appl. Math. Stat. Inform. 12, 41–53 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Zadeh, L.A.: Fuzzy sets. Inform. Control 8, 338–353 (1965)

    MATH  Google Scholar 

  16. Gertner, G.Z., Zhu, H.: Bayesian estimation in forest surveys when samples or prior information are fuzzy. Fuzzy Sets Syst. 77, 277–290 (1996)

    MATH  Google Scholar 

  17. Grzegorzewski, P., Hryniewicz, O.: Computing with words and life data. Int. J. Appl. Math. Comput. Sci. 12(3), 337–345 (2002)

    MATH  Google Scholar 

  18. Viertl, R.: Univariate statistical analysis with fuzzy data. Comput. Stat. Data Anal. 51(1), 133–147 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Shafiq, M., Viertl, R.: On the estimation of parameters, survival functions, and hazard rates based on fuzzy life time data. Commun. Stat. Theory Methods 46(10), 5035–5055 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Denoeux, T.: Maximum likelihood estimation from fuzzy data using the EM algorithm. Fuzzy Sets Syst. 183(1), 72–91 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Zhi-gang, S., Shu-rong, Z., Pei-hong, W.: Likelihood-based multivariate fuzzy model with linear inequality constraints. J. Intell. Fuzzy Syst. 27, 2191–2209 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Pak, A., Parham, G.A., Saraj, M.: Inferences on the competing risk reliability problem for exponential distribution based on fuzzy data. IEEE Trans. Reliab. 63(1), 1–10 (2014)

    Google Scholar 

  23. AL-Sultany, S.: Bayesian estimations with fuzzy data to estimation inverse Rayleigh scale parameter. Open J. Appl. Sci. 9, 673–681 (2019)

    Google Scholar 

  24. Mabrouk, I.S.: Statistical inference for the parameter of the inverse Lindley distribution based on imprecise data with simulation study. Int. J. Contemp. Math. Sci. 14(4), 151–161 (2019)

    Google Scholar 

  25. Khoolenjani, N.B., Shahsanaie, F.: Estimating the parameter of exponential distribution under type-II censoring from fuzzy data. J. Stat. Theory Appl. 15(2), 181–195 (2016)

    MathSciNet  Google Scholar 

  26. Makhdoom, I., Nasisri, P., Pak, A.: Estimating the parameter of exponential distribution under type II censoring from fuzzy data. J. Mod. Appl. Stat. Methods 15, 495–509 (2016)

    MathSciNet  Google Scholar 

  27. Chaturvedi, A., Singh, S.K., Umesh Singh, U.: Statistical inferences of type-II progressively hybrid censored fuzzy data with Rayleigh distribution. Austrian J. Stat. 47, 40–62 (2018)

    Google Scholar 

  28. Shahrastani, S.Y.: Estimating E-Bayesian and hierarchical Bayesian of scalar parameter of Gompertz distribution under type II censoring schemes based on fuzzy data. Commun. Stat. Theory Methods 48(4), 831–840 (2019)

    MathSciNet  Google Scholar 

  29. Casella, G., Berger, R.L.: Statistical Inference, 2nd edn. Duxbury Press, Pacific Grove (2002)

    MATH  Google Scholar 

  30. Rastogi, M.K., Tripathi, Y.M.: Estimating the parameters of a Burr distribution under progressive type II censoring. Stat. Methodol. 9, 381–391 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Sharma, V.K., Singh, S.K., Singh, U.: Classical and Bayesian methods of estimation for power Lindley distribution with application to waiting time data. Commun. Stat. Appl. Methods 24(3), 193–209 (2017)

    Google Scholar 

  32. Pak, A., Dey, S.: Statistical Inference for the power Lindley model based on record values and inter-record times. J. Comput. Appl. Math. 347, 156–172 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer-Verlag, New York (1998)

    MATH  Google Scholar 

  34. Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice. Chapman and Hall, London (1996)

    MATH  Google Scholar 

  35. Lehmann, E.L., Casella, G.: Theory of Point Estimation, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  36. Chen, M.H., Shao, Q.M.: Monte Carlo estimation of Bayesian credible and HPD intervals. J. Comput. Graph. Stat. 8, 69–92 (1999)

    MathSciNet  Google Scholar 

  37. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd edn. Chapman Hall, London (2003)

    MATH  Google Scholar 

  38. Meeker, W.Q., Hahn, G.J., Escobar, L.A.: Statistical Intervals, A Guide for Practitioners and Researches, 2nd edn. Wiley, Hoboken (2017)

    MATH  Google Scholar 

  39. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer, New York (1996)

    MATH  Google Scholar 

  40. Valiollahi, R., Asgharzadeh, A., Raqab, M.Z.: Estimation of \(P(Y < X)\) for Weibull distribution under progressive type-II censoring. Commun. Stat. Theory Methods 42(24), 4476–4498 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Pak, A., Parham, G.A., Saraj, M.: Inference for the Weibull distribution based on fuzzy data. Revista Colombiana de Estadistica 36(2), 339–358 (2013)

    MathSciNet  Google Scholar 

  42. Pak, A., Parham, G.A., Saraj, M.: On estimation of Rayleigh scale parameter under doubly type II censoring from imprecise data. J. Data Sci. 11, 303–320 (2013)

    MathSciNet  Google Scholar 

  43. Zadeh, L.A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 10, 421–427 (1968)

    MathSciNet  MATH  Google Scholar 

  44. Cannarile, F., Compare, M., Rossi, E., Zio, E.: A fuzzy expectation maximization based method for estimating the parameters of a multi-state degradation model from imprecise maintenance outcomes. Ann. Nuclear Energy 110, 739–752 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Associate Editor and referees for their constructive comments and suggestions which improved and enriched the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Pak.

Appendices

Appendix 1: Derivation of the Likelihood Function (10)

The notion of probability was extended to fuzzy events by Zadeh [43]. In this appendix, using the definition of the probability of fuzzy events, we derive the formula (10).

Let \((\mathbb {R}^{n},{\mathcal {A}},P)\) be a probability space in which \({ \mathcal {A}}\) is the \(\sigma\)-field of Borel sets in \(\mathbb {R}^{n}\) and P is a probability measure on \(\mathbb {R}^{n}\). A fuzzy event in \(\mathbb {R}^{n}\) is a fuzzy subset \(\tilde{A}\) of \(\mathbb {R}^{n}\) whose membership function \(\mu _{\tilde{A}}\) is Borel measurable. The probability of \(\tilde{A}\) is defined as

$$\begin{aligned} P(\tilde{A})=\int \mu _{\tilde{A}}(\varvec{x})dP. \end{aligned}$$
(27)

Using Eqs. (2) and (27), the likelihood function of \(\gamma\) and \(\delta\) is obtained as

$$\begin{aligned} L_{O}(\gamma ,\delta ; \tilde{{\varvec{x}}})= & {} P({\tilde{\varvec{x}}};\gamma ,\delta )=\int f(\varvec{x};\gamma ,\delta )\mu _ {\tilde{{\varvec{x}}}}(\varvec{x})d\varvec{x} \nonumber \\= & {} \prod \limits _{i=1}^{n} \int \gamma \delta e^{-\delta x}(1-e^{-\delta x})^{\gamma -1}\mu _{\tilde{x}_{i}}(x)dx. \end{aligned}$$
(28)

Appendix 2: Calculation of the MLEs

The fuzzy EM algorithm (FEM) proposed by Denoeux [20] is an applicable procedure for the calculation of maximum likelihood estimates in the problems dealing with fuzzy data. Recently, FEM method is widely used in statistical inferences; see for example Khoolenjani and Chatrabgoun [14], Makhdoom et al. [26], and Cannarile et al. [44]. In this approach, the fuzzy sample \(\tilde{\mathbf {x}}\) is considered to be as an incomplete specification of a complete data vector \(\mathbf {x}\). For implementing the algorithm, the complete-data log-likelihood function of the parameters, say \(\ell (\gamma , \delta ;\mathbf {x})\), is obtained. Then, the conditional expectation \(Q(\gamma , \delta )=E[\ell (\gamma , \delta ;\mathbf {x})\mid \tilde{\mathbf {x}}]\) is computed. Maximizing \(Q(\gamma , \delta )\) with respect to the parameters yields the MLEs \(of \gamma\) and \(\delta\).

In our case, the complete-data log-likelihood function becomes

$$\begin{aligned} \ell (\gamma , \delta ;\mathbf {x})= & {} n \log \gamma +n\log \delta -\delta \sum _{i=1}^{n}x_i\nonumber \\&+(\gamma -1)\sum _{i=1}^{n} \log (1-e^{-\delta x_i}). \end{aligned}$$
(29)

By equating derivatives of log-likelihood (29) with respect to \(\gamma\) and \(\delta\) to zero we have

$$\begin{aligned} \frac{n}{\gamma }= & {} -\sum \limits _{i=1}^{n}\log (1-e^{-\delta x_i}), \end{aligned}$$
(30)
$$\begin{aligned} \frac{n}{\delta }= & {} \sum _{i=1}^{n}x_i-(\gamma -1)\sum _{i=1}^{n} \frac{x_ie^{-\delta x_i}}{1-e^{-\delta x_i}}. \end{aligned}$$
(31)

The likelihood Eqs. (30) and (31) is updated by the following steps to compute the MLEs.

  • Step 1. Let the initial values of the parameters be \((\gamma ^{0}, \delta ^{0})\) and set \(t=0\).

  • Step 2. For \(i=1,\ldots ,n\), compute the conditional expectations

    $$\begin{aligned} \phi _{1i}= & {} E_{(\gamma ^{t}, \delta ^{t})}[\log (1-e^{-\delta X})\mid \tilde{\mathbf {x}}]\\= & {} \frac{\int e^{-(\delta ^{t} x)}(1-e^{-(\delta ^{t} x)})^{\gamma ^{t} -1}\log (1-e^{-(\delta ^{t} x)})\mu _{\tilde{x}_{i}}(x)dx}{\int e^{-(\delta ^{t} x)}(1-e^{-(\delta ^{t} x)})^{\gamma ^{t} -1}\mu _{\tilde{x}_{i}}(x)dx},\\ \phi _{2i}= & {} E_{(\gamma ^{t}, \delta ^{t})}[\frac{Xe^{-\delta X}}{1-e^{-\delta X}}\mid \tilde{\mathbf {x}}]\\= & {} \frac{\int xe^{-(2\delta ^{t} x)}(1-e^{-(\delta ^{t} x)})^{\gamma ^{t} -2}\mu _{\tilde{x}_{i}}(x)dx}{\int e^{-(\delta ^{t} x)}(1-e^{-(\delta ^{t} x)})^{\gamma ^{t} -1}\mu _{\tilde{x}_{i}}(x)dx}, \end{aligned}$$

    and

    $$\begin{aligned} \phi _{3i}=E_{(\gamma ^{t}, \delta ^{t})}[X\mid \tilde{\mathbf {x}}]=\frac{\int xe^{-(\delta ^{t} x)}(1-e^{-(\delta ^{t} x)})^{\gamma ^{t} -1}\mu _{\tilde{x}_{i}}(x)dx}{\int e^{-(\delta ^{t} x)}(1-e^{-(\delta ^{t} x)})^{\gamma ^{t} -1}\mu _{\tilde{x}_{i}}(x)dx}, \end{aligned}$$

    and replace (30) and (31) with

    $$\begin{aligned} \frac{n}{\gamma }=-\sum \limits _{i=1}^{n}\phi _{1i} \end{aligned}$$

    and

    $$\begin{aligned} \frac{n}{\delta }=\sum _{i=1}^{n}\phi _{3i}-(\gamma -1)\sum _{i=1}^{n} \phi _{2i}, \end{aligned}$$

    respectively.

  • Step 3. Obtain the updated values of the parameters as

    $$\begin{aligned} \gamma ^{t+1}=-\frac{n}{\sum \limits _{i=1}^{n}\phi _{1i}} ~ \ \ \text {and}~ \ \ \delta ^{t+1}=\frac{n}{\sum _{i=1}^{n}\phi _{3i}-(\gamma ^{t+1}-1)\sum _{i=1}^{n} \phi _{2i}}. \end{aligned}$$
  • Step 4. Let \(t=t+1\)

  • Step 5. Repeat Steps 2–4 until \(L(\gamma ^{t+1}, \delta ^{t+1};\tilde{\mathbf {x}})-L(\gamma ^{t}, \delta ^{t};\tilde{\mathbf {x}})/ |L(\gamma ^{t}, \delta ^{t};\tilde{\mathbf {x}})|\) becomes smaller than arbitrary small value \(\varrho\). The current values \(\gamma ^{t}\) and \(\delta ^{t}\) are the ML estimates of the interested parameters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pak, A., Khoolenjani, N.B., Alamatsaz, M.H. et al. Bayesian Method for the Generalized Exponential Model Using Fuzzy Data. Int. J. Fuzzy Syst. 22, 1243–1260 (2020). https://doi.org/10.1007/s40815-020-00843-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00843-8

Keywords

Mathematics Subject Classification

Navigation