Skip to main content
Log in

Robust Self-Adjustable Path-Tracking Control for Autonomous Underwater Vehicle

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The purpose of this study is to design a supervisory two-level controller for an autonomous underwater vehicle path following problem despite the underwater uncertain operation conditions and external measurement noises. For the controller description, the surge degree of freedom dynamic model is linearized using feedback linearization technique and then a fuzzy PID tracking control law is sketched. To illustrate the robust tracking performance of the controller, the proposed control law is compared with a conventional PID controller. The results show improvement in the tracking error in the presence of noise and dynamic model parameter perturbation. The main reason behind the ability of the supervisory controller in handling the uncertainties is the auto-adjustment ability of PID gains when faced with real-time situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Geranmehr, B., Nekoo, S.R.: Nonlinear suboptimal control of fully coupled non-affine six-DOF autonomous underwater vehicle using the state-dependent Riccati equation. Ocean Eng. 96, 248–257 (2015)

    Article  Google Scholar 

  2. Guo, S., Shilian, M., Shi, L., Li, M.: Design and kinematic analysis of an amphibious spherical robot. In: Proceedings of 2012 IEEE International Conference on Mechatronics and Automation. pp. 2214–2219 (2012)

  3. AlMahturi, A., Wahid, H.: Optimal tuning of linear quadratic regulator controller using a particle swarm optimization for two-rotor aerodynamical system. Int. J. Electr. Comput. Energy Electron. Commun. Eng. 11(2), 184–190 (2017)

  4. Herman, P.: Decoupled PD set-point controller for underwater vehicles. Ocean Eng. 36(6–7), 529–534 (2009)

    Article  MathSciNet  Google Scholar 

  5. Rout, R., Subudhi, B.: Inverse optimal self-tuning PID control design for an autonomous under water vehicle. Int. J. Syst. Sci. 48(2), 367–375 (2017)

    Article  Google Scholar 

  6. Caharija, W., Pettersen, K.Y., Bibuli, M., Calado, P., Zereik, E., Braga, J., Gravdahl, J.T., Sorensen, A.J., Milovanovic, M., Bruzzone, G.: Integral line-of-sight guidance and control of underactuated marine vehicles: theory, simulations, and experiments. IEEE Trans. Control Syst. Technol. 24(5), 1623–1642 (2016)

    Article  Google Scholar 

  7. Wang, N., Lv, S., Er, M.J., Chen, W.H.: Fast and accurate trajectory tracking control of an autonomous surface vehicle with unmodelled dynamics and disturbances. IEEE Trans. Intell. Veh. 1(3), 230–243 (2016)

    Article  Google Scholar 

  8. Wang, N., Qian, C., Sun, J.C., Liu, Y.C.: Adaptive robust finite time trajectory tracking control of fully actuated marine surface vehicles. IEEE Trans. Control Syst. Technol. 24(4), 1454–1462 (2016)

    Article  Google Scholar 

  9. Yao, F., Yang, C., Liu, X., Zhang, M.: Experimental evaluation on depth control using improved model predictive control for autonomous underwater vehicle (auvs). Sensors. 18, 7 (2018)

    Google Scholar 

  10. Gao, J., Wu, P., Li, T., Proctor, A.: Optimization-based model reference adaptive control for dynamic positioning of a fully actuated underwater vehicle. Nonlinear Dyn. 87(4), 2611–2623 (2017)

    Article  Google Scholar 

  11. Rath, B. N., Subudhi, B., Filaretov, V., Zuev, A.: A new backstepping control design method for autonomous under water vehicle in diving and steering plane. In: Region 10 Conference, TENCON 2017 IEEE. pp. 1984–1987 (2017)

  12. Xiang, X., Yu, C., Zhang, Q., Xu, G.: Path-following control of an AUV: fully actuated versus under-actuated configuration. Mar. Technol. Soc. J. 50(1), 34–47 (2016)

    Article  Google Scholar 

  13. Zhou, H., Liu, K., Li, Y., Ren, S.: Dynamic sliding mode control based on multi-model switching laws for the depth control of an autonomous underwater vehicle. Int. J. Adv. Robot Syst. 1, 8 (2015)

    Google Scholar 

  14. Guerrero, J., Antonio, E., Manzanilla, A., Torres, J., Lozano, R.: Autonomous underwater vehicle robust path tracking: auto-adjustable gain high order sliding mode controller. IFAC-Papers Online 51(13), 161–166 (2018)

    Article  Google Scholar 

  15. Nira Mawangi, S., Rafidah, N., Herdawatie, A.K., Mohd Hafiz, A.J.: Depth control of autonomous underwater vehicle using discrete time sliding mode controller. Univ. J. Elect. Elect. Eng. (2019). https://doi.org/10.13189/ujeee.2019.061613

    Article  Google Scholar 

  16. Qiao, L., Zhang, W.: Adaptive non-singular integral terminal sliding mode tracking control for autonomous underwater vehicles. IET Control Theory Appl. 11(8), 1293–1306 (2017)

    Article  MathSciNet  Google Scholar 

  17. Ramezani-al, M.R., Tavanaei-ereshki, Z.: Anadaptive sliding mode controller with a new reaching law for tracking problem of an autonomous under water vehicles. Trans. Inst. Meas. Control 7, 1 (2018)

    Google Scholar 

  18. Gao, J., An, X., Proctor, A., Bradley, C.: Sliding mode adaptive neural network control for hybrid visual servoing of underwater vehicles. Ocean Eng. 142, 666–675 (2017)

    Article  Google Scholar 

  19. Guo, X., Yan, W., Cui, R.: Neural Network-based Nonlinear Sliding-Mode Control for an AUV without velocity measurements. Int. J. Control 71(79), 1–16 (2017)

    Google Scholar 

  20. Wang, G., Xu, G., Liu, G., Wang, W., Li, B.: Fuzzy iterative sliding mode control applied for path following of an autonomous underwater vehicle with large inertia. Math. Prob. Eng. (2019). https://doi.org/10.1155/2019/8650243

    Article  MathSciNet  MATH  Google Scholar 

  21. Qi, D., Feng, J., Yang, J.: Longitudinal motion control of AUV based on fuzzy sliding mode method. J. Control Sci. Eng. 1, 7 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Chu, Z., Xiang, X., Zhu, D., Luo, C.: Adaptive fuzzy sliding mode diving control for autonomous underwater vehicle with input constraint. Int. J. Fuzzy Syst. 20(5), 1460–1469 (2018)

    Article  MathSciNet  Google Scholar 

  23. Ansari, U., Bajodah, A.: Autonomous underwater vehicles attitude control using neuro-adaptive generalized dynamic inversion. IFAC PapersOnLine. 52(29), 103–109 (2019)

    Article  Google Scholar 

  24. Chu, Z., Zhu, D., Yang, S.X.: Observer-based adaptive neural network trajectory tracking control for remotely operated vehicle. IEEE Trans. Neural Netw. Learn. Syst. 28(7), 1633–1645 (2017)

    Article  MathSciNet  Google Scholar 

  25. Yoo, B.: Path optimization for marine vehicles in ocean currents using reinforcement learning. J. Mar. Sci. Technol. 21(2), 334–343 (2016)

    Article  Google Scholar 

  26. Hu, H., Song, S., Chen, C.P.: Plume tracing via model-free reinforcement learning method. IEEE Trans. Neural Netw. Learn. Syst. (2019). https://doi.org/10.1109/TNNLS.2018.2885374

    Article  MathSciNet  Google Scholar 

  27. Carlucho, I., De Paula, M., Wang, S.: Adaptive low level control of autonomous underwater vehicles using deep reinforcement learning. Robot. Autonom. Syst. 107, 71–86 (2018)

    Article  Google Scholar 

  28. Wang, N., Er, M.J.: Direct adaptive fuzzy tracking control of marine vehicles with fully unknown parametric dynamics and uncertainties. IEEE Trans. Control Syst. Technol. 24(5), 1845–1852 (2016)

    Article  Google Scholar 

  29. Yu, C., Xiang, X., Lapierre, L., Zhang, Q.: Nonlinear guidance and fuzzy control for three-dimensional path following of an underactuated autonomous underwater vehicle. Ocean Eng. 146, 457 (2017)

    Article  Google Scholar 

  30. Fang, M.C., Wang, S.M., Mu-Chen, W., Lin, Y.H.: Applying the self-tuning fuzzy control with the image detection technique on the obstacle-avoidance for autonomous underwater vehicles. Ocean Eng. 93, 11–24 (2015)

    Article  Google Scholar 

  31. Zhang, L., Pang, Y., Su, Y., Liang, Y.: HPSO-based fuzzy neural network control for AUV. J. Control Theory Appl. 6(3), 322–326 (2008)

    Article  MathSciNet  Google Scholar 

  32. Faruq, A., Abdullah, S.S.B., Shah, M.F.N.: Optimization of an intelligent controller for an unmanned underwater vehicle. TELKOMNIKA (Telecommunication Computing Electronics and Control). 9(2), 245–256 (2011)

    Article  Google Scholar 

  33. Javadi-Moghaddam, J., Bagheri, A.: An adaptive neuro-fuzzy sliding mode based genetic algorithm control system for under water remotely operated vehicle. Expert Syst. Appl. 37(1), 647–660 (2010)

    Article  Google Scholar 

  34. Khodayari, M.H., Balochian, S.: Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller. J. Mar. Sci. Technol. 20(3), 559–578 (2015)

    Article  Google Scholar 

  35. Xiang, X., Yu, C., Lapierre, L., Zhang, J., Zhang, Q.: Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles. Int. J, Fuzzy Syst (2017)

    Google Scholar 

  36. Liu, S., Liu, Y., Wang, N.: Robust adaptive self-organizing neuro-fuzzy tracking control of UUV with system uncertainties and unknown dead-zone nonlinearity. Nonlinear Dyn. 89(2), 1397–1414 (2017)

    Article  Google Scholar 

  37. Vervoort, J.H.A.M.: Modeling and control of an unmanned underwater vehicle. Master traineeship report, University of Canterbury. (2008)

  38. Wang, L.X.: A course in fuzzy systems and control. Prentice Hall, New York (1996)

    Google Scholar 

Download references

Funding

We have not received any funds.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MG and the control law was designed by NZ. The first draft of the manuscript was written by NZ and all authors commented on previous versions of the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Nadia Zendehdel.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zendehdel, N., Gholami, M. Robust Self-Adjustable Path-Tracking Control for Autonomous Underwater Vehicle. Int. J. Fuzzy Syst. 23, 216–227 (2021). https://doi.org/10.1007/s40815-020-00939-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00939-1

Keywords

Navigation