Skip to main content
Log in

Fault Detection and Isolation of T–S Fuzzy Systems with Time-Delay Using Geometric Approach

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper investigates the fault detection and isolation problem for Takagi–Sugeno fuzzy time-delay systems under the framework of geometric method. First, the geometric concept of unobservability subspace is introduced and the algorithm for constructing the subspace is presented. Then, based on the above algorithm, the faults are divided into the different unobservability subspaces, and the reduced-order subsystems set corresponding to the fault set is constructed according to the geometrical properties of factor space and canonical projection. Finally, a set of structured residuals which are sensitive to a single fault and decoupled from other faults is established by designing an observer for the subsystems. In addition, \(H_\infty\) performance is introduced to attenuate the effects of disturbances and error signals caused by a time-varying delay on the residual. Simulation example verifies the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Deng, C., Wen, C.: Distributed resilient observer-based fault-tolerant control for heterogeneous multiagent systems under actuator faults and DoS attacks”. IEEE Trans. Control Netw. Syst. 7(3), 1308–1318 (2020)

    Article  MathSciNet  Google Scholar 

  2. Li, X.J., Shen, X.Y.: A data-driven attack detection approach for DC servo motor systems based on mixed optimization strategy. IEEE Trans. Ind. Inform. 16(9), 5806–5813 (2020)

    Article  Google Scholar 

  3. Wu, L.B., Park, J.H.: Adaptive fault-tolerant control of uncertain switched nonaffine nonlinear systems with actuator faults and time delays. IEEE Trans. Syst. Man Cybern. Syst. 50(9), 3470–3480 (2020)

    Article  Google Scholar 

  4. Wu, L.B., Park, J.H., Zhao, N.N.: Robust adaptive fault-tolerant tracking control for nonaffine stochastic nonlinear systems with full state constraints. IEEE Trans. Cybern. 50(8), 3793–3805 (2020)

    Article  Google Scholar 

  5. Haj Brahim, I., Chaabane, M., Mehdi, D.: Fault-tolerant control for T-S fuzzy descriptor systems with sensor faults: An LMI approach. Int. J. Fuzzy Syst. 19, 516–527 (2017)

    Article  MathSciNet  Google Scholar 

  6. Li, X.J., Yang, G.H.: Adaptive fault-tolerant synchronization control of a class of complex dynamical networks with general input distribution matrices and actuator faults. IEEE Trans. Neural Netw. Learn. Syst. 28(3), 559–569 (2017)

    Article  MathSciNet  Google Scholar 

  7. Zhang, Z., Jaimoukha, I.M.: On-line fault detection and isolation for linear discrete-time uncertain systems. Automatica 50(2), 513–518 (2014)

    Article  MathSciNet  Google Scholar 

  8. Sina, T.B., Khorasani, K.: Fault detection and isolation of gas turbine engines using a bank of neural networks. J. Process Control. 36, 22–41 (2015)

    Article  Google Scholar 

  9. Ge, H., Yue, D., Xie, X.: Observer-based fault diagnosis of nonlinear systems via an improved homogeneous polynomial technique. Int. J. Fuzzy Syst. 20, 403–415 (2018)

    Article  MathSciNet  Google Scholar 

  10. Li, X.J., Yang, G.H.: Fault detection for T-S fuzzy systems with unknown membership functions. IEEE Trans. Fuzzy Syst. 22(1), 139–152 (2014)

    Article  Google Scholar 

  11. Yang, G.H., Wang, H.M.: Fault detection and isolation for a class of uncertain state-feedback fuzzy control systems. IEEE Trans. Fuzzy Syst. 23(1), 139–151 (2015)

    Article  Google Scholar 

  12. Zhai, D., An, L.W., Dong, J.X., Zhang, Q.L.: Simultaneous \(H_2/H_\infty\) fault detection and control for networked systems with application to forging equipment. Signal Process. 125, 203–215 (2016)

    Article  Google Scholar 

  13. Chadli, M., Abdo, A., Ding, S.H.: \(H_-/H_\infty\) fault detection filter design for discrete-time Takagi-Sugeno fuzzy system. Automatica 49(7), 1996–2005 (2013)

    Article  MathSciNet  Google Scholar 

  14. Zhai, D., Lu, A.Y., Li, J.H., Zhang, Q.L.: Simultaneous fault detection and control for switched linear systems with mode-dependent average dwell-time. Appl. Math. Comput. 273, 767–792 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Jee, S.C., Lee, H.J.: Sampled-data \(H_-/H_\infty\) fault detection and isolation for nonlinear systems in T-S form: An approximate model approach. Fuzzy Sets Syst. 297, 112–127 (2016)

    Article  Google Scholar 

  16. Murray, W.W.: Linear Multivariable Control: A Geometric Approach. Springer, New York (1979)

    MATH  Google Scholar 

  17. Isidori, A.: Nonlinear Control Systems. Springer, New York (2013)

    MATH  Google Scholar 

  18. De Persis, C., Isidori, A.: A geometric approach to nonlinear fault detection and isolation. IEEE Trans. Autom. Control 46(6), 853–865 (2001)

    Article  MathSciNet  Google Scholar 

  19. Bokor, J., Balas, G.: Detection filter design for LPV systems–a geometric approach. Automatica 40(3), 511–518 (2004)

    Article  MathSciNet  Google Scholar 

  20. Kabore, P., Hammouri, H., Kinnaert, M.: A geometric approach to fault detection and isolation for bilinear systems: application to heat exchangers. IFAC Proceedings Volumes 33(11), 249–254 (2000)

    Article  Google Scholar 

  21. Meskin, N., Khorasani, K.: Robust fault detection and isolation of time-delay systems using a geometric approach. Automatica 45(6), 1567–1573 (2009)

    Article  MathSciNet  Google Scholar 

  22. Han, L., Qiu, C.Y., Xiao, J.: Finite-time \(H_\infty\) control synthesis for nonlinear switched systems using T-S fuzzy model. Neurocomputing 171, 156–170 (2016)

    Article  Google Scholar 

  23. Zhang, Z.Y., Lin, C., Chen, B.: New results on \(H_\infty\) filter design for nonlinear time-delay systems via fuzzy line-integral approach. Int. J. Fuzzy Syst. 18(5), 904–913 (2016)

    Article  MathSciNet  Google Scholar 

  24. Shen, Q.K., Jiang, B., Cocquempot, V.: Fault-tolerant control for T-S fuzzy systems with application to Near-Space hypersonic vehicle with actuator faults. IEEE Trans. Fuzzy Syst. 20, 652–665 (2012)

    Article  Google Scholar 

  25. Li, X.J., Yang, G.H.: Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults. IEEE Trans. Cybern. 44(8), 1446–1458 (2014)

    Article  Google Scholar 

  26. Liu, L., Yin, Y.F., Wang, J.H., Wu, Q.H.: Stability analysis of discrete-time switched nonlinear systems via T-S fuzzy model approach. Neurocomputing 173, 1967–1971 (2016)

    Article  Google Scholar 

  27. Ma, H., Li, H.Y., Lu, R.Q., Huang, T.W.: Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances. Sci. China Inf. Sci. 63(5), 1–15 (2020)

    Article  MathSciNet  Google Scholar 

  28. Pan Y.N., Du, P.H., Xue, H., Lam, H.K.: Singularity-free fixed-time fuzzy control for robotic systems with user-defined performance. IEEE Trans. Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2020.2999746.

  29. Du, P.H., Pan, Y.N., Li, H.Y., Lam, H.K.: Nonsingular finite-time event-triggered fuzzy control for large-scale nonlinear systems. IEEE Trans. Fuzzy Syst https://doi.org/10.1109/TFUZZ.2020.2992632

  30. Li, Y.M., Sun, K.K., Tong, S.C.: Observer-based adaptive fuzzy fault-tolerant optimal control for SISO nonlinear systems. IEEE Trans. Cybern. 49(2), 649–661 (2019)

    Article  Google Scholar 

  31. Li, Y.M., Ma, Z.Y., Tong, S.C.: Adaptive fuzzy fault-tolerant control of non-triangular structure nonlinear systems with error-constraint. IEEE Trans. Fuzzy Syst. 26(4), 2062–2074 (2018)

    Article  Google Scholar 

  32. Li, Y.M., Tong, S.C.: Adaptive neural networks decentralized FTC design for nonstrict-feedback nonlinear interconnected large-scale systems against actuator faults. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2541–2554 (2017)

    Article  MathSciNet  Google Scholar 

  33. Zhu, Z.C., Pan, Y.N., Zhou, Q., Lu, C.X.: Event-triggered adaptive fuzzy control for stochastic nonlinear systems with unmeasured states and unknown backlash-like hysteresis. IEEE Trans. Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2020.2973950

  34. Wang, X.L., Yang, G.H.: Fault detection for T-S fuzzy systems with past output measurements. Fuzzy Sets Syst. 365, 98–115 (2019)

    Article  MathSciNet  Google Scholar 

  35. Zhai, D., An, L.W., Li, J.H., Zhang, Q.L.: Finite frequency fault detection for T-S fuzzy singular multiple timedelay systems. Int. J. Control Autom. Syst. 14(4), 977–985 (2016)

    Article  Google Scholar 

  36. Dong, H.L., Wang, Z.D., Lam, J., Gao, H.J.: Fuzzy-model-based robust fault detection with stochastic mixed time delays and successive packet dropouts. IEEE Trans. Syst. Man Cybern. 42(2), 365–376 (2012)

    Article  Google Scholar 

  37. Jee, S.C., Lee, H.J.: \(H_-/H_\infty\) fault detection and isolation for nonlinear systems with state delay in T-S form. J. Franklin Inst. 353(9), 2030–2056 (2016)

    Article  MathSciNet  Google Scholar 

  38. Li, L., Chadli, M., Ding, S.X., Qiu, J., Yang, Y.: Diagnostic observer design for T-S fuzzy systems: application to real-time-weighted fault-detection approach. IEEE Trans. Fuzzy Syst. 26(2), 805–816 (2018)

    Article  Google Scholar 

  39. Li, L., Ding, S.X., Qiu, J., Yang, Y., Xu, D.: Fuzzy observer-based fault detection design approach for nonlinear processes. IEEE Trans. Syst. Man Cybern. 47(8), 1941–1952 (2017)

    Article  Google Scholar 

  40. Islam, S.I., Lim, C., Shi, P.: Robust fault detection of T-S fuzzy systems with time-delay using fuzzy functional observer. Fuzzy Sets Syst. 392(1), 1–23 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jian Li.

Appendices

Appendix A: Proof of Lemma 3

Proof

First, for any \({\mathscr {Z}}\in {\mathscr {J}}\) that satisfies \((A_i+D_iC){\mathscr {Z}}\subseteq {\mathscr {Z}}\) and \((A_{\tau i}+D_{\tau i} C){\mathscr {Z}}\subseteq {\mathscr {Z}}\), we have

$$\begin{aligned} (A_i+D_iC){\mathscr {Z}}&\subseteq (A_i+D_iC)({\mathscr {S}}+\bigcap _{i=1}^s(A_i^{-1}{\mathscr {Z}}\cap \ker C))\\&\subseteq (A_i+D_iC)({\mathscr {S}}+A_i^{-1}{\mathscr {Z}}\cap \ker C)\\&\subseteq (A_i+D_iC){\mathscr {S}}+A_i(A_i^{-1}{\mathscr {Z}}\cap \ker C)\\&\subseteq {\mathscr {S}}+{\mathscr {Z}}\subseteq {\mathscr {Z}}. \end{aligned}$$

The same as above, we have \((A_{\tau i}+D_{\tau }C){\mathscr {Z}}\subseteq {\mathscr {Z}}\), where \({\mathscr {S}}\subseteq {\mathscr {Z}}\), hence \({\mathscr {Z}}\in {\mathfrak {W}}^{s}\). then we have \({\mathscr {Z}}^*\in {\mathfrak {W}}^{s}\). In addition, obviously if \({\mathscr {V}}\subseteq {\mathscr {S}}\), then \({\mathscr {V}}\subseteq {\mathscr {Z}}^*\) since \({\mathscr {S}}\subseteq {\mathscr {Z}}^*\). Consider the case of \({\mathscr {S}}\subseteq {\mathscr {V}}\), we have

$$\begin{aligned} A_i^{-1}{\mathscr {V}}\cap \ker C&=(A_i+D_iC)^{-1}{\mathscr {V}}\cap \ker C,\\ A_{\tau i}^{-1}{\mathscr {V}}\cap \ker C&=(A_{\tau i}+D_{\tau i}C)^{-1}{\mathscr {V}}\cap \ker C. \end{aligned}$$

We consider the facts that \({\mathscr {V}}\subseteq (A_i+D_i)^{-1}{\mathscr {V}}\) and if \({\mathscr {S}}\in {\mathscr {V}}\), then \({\mathscr {S}}+({\mathscr {V}}\cap \ker C)={\mathscr {V}}\cap ({\mathscr {S}}+\ker C)\). Clearly that \({\mathscr {V}}\subseteq {\mathscr {Z}}_0\). From the two facts, it can be concluded that if \({\mathscr {V}}\subseteq {\mathscr {Z}}_{k}\), then

$$\begin{aligned} {\mathscr {Z}}_{k+1}\supseteq&({\mathscr {S}}+\bigcap _{i=1}^s(A_i^{-1}{\mathscr {V}}\cap \ker C))\\&\bigcap \left( {\mathscr {S}}+\bigcap _{i=1}^s(A_{\tau i}^{-1}{\mathscr {V}}\cap \ker C)\right) \\ \supseteq&({\mathscr {S}}+\bigcap _{i=1}^s((A_i+D)^{-1}{\mathscr {V}})\cap \ker C))\\&\bigcap \left. \left( {\mathscr {S}}+\bigcap _{i=1}^s((A_{\tau i} +D_\tau )^{-1}{\mathscr {V}})\cap \ker C\right) \right) \\ \supseteq&{\mathscr {S}}+({\mathscr {V}}\cap \ker C)={\mathscr {V}}. \end{aligned}$$

Consequently, \({\mathscr {V}}\subseteq {\mathscr {Z}}_{k+1}\), and \({\mathscr {V}}\subseteq {\mathscr {Z}}^*\), then we have \({\mathscr {Z}}^*=\ll {\mathscr {S}}+\ker C|(A_i+D_iC),(A_{\tau i}+D_{\tau i} C)\gg _{i\in \{1\cdots s\}}\). \(\square\)

Appendix B: Proof of Lemma 4

Proof

First let us prove the “if” part. If \({\mathscr {S}}\in {\mathfrak {W}}^{s}\) and \({\mathscr {S}}={\mathscr {Z}}^*\) hold, then it can be got that \({\mathscr {S}}=\ll {\mathscr {S}}+\ker C|(A_i+D_iC),(A_{\tau i}+D_{\tau i}C)\gg _{i\in \{1\cdots s\}}\) according to Lemma 3. From Lemma 2. one gets \({\mathscr {S}}\in {\mathfrak {S}}^{s}\).

Now let us prove the “only if” part, if \({\mathscr {S}}\) is an unobservability subspace, we have \({\mathscr {S}}\in {\mathfrak {W}}^{s}\), and according to Lemma 3, one gets \({\mathscr {S}}={\mathscr {Z}}^*\). \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, XJ. Fault Detection and Isolation of T–S Fuzzy Systems with Time-Delay Using Geometric Approach. Int. J. Fuzzy Syst. 23, 937–946 (2021). https://doi.org/10.1007/s40815-020-01023-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-01023-4

Keywords

Navigation