Skip to main content
Log in

An Efficient High-Order α-Plane Aggregation in General Type-2 Fuzzy Systems Using Newton–Cotes Rules

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Nowadays, general type-2 fuzzy systems are an attractive alternative for non-linear control problems because they provide good robustness in real-world environments, where there exist many noise sources. This kind of fuzzy systems can have better performance in comparison to type-1 fuzzy systems as they offer uncertainty handling capabilities. However, one of the main problems in implementing general type-2 fuzzy systems is their elevated computational cost. The computational cost of a general type-2 fuzzy system depends on the representation that is used, for example, the α-planes representation consists on a discretization of general type-2 fuzzy systems into several horizontal slices called α-planes, then solving every α-plane as an interval type-2 fuzzy system and after that the integration of the results to approximate a general type-2 fuzzy system. The main contribution of this work is the proposed computational cost reduction of the α-planes representation by optimizing the α-planes integration process based on the composite Newton–Cotes rules. In this way, the number of α-planes required for a good approximation is reduced, and the computational cost is also reduced by introducing new equations for the α-planes aggregation. Finally, a systematic comparative analysis of the improvement offered by the proposed method with respect to the conventional approach is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Castillo, O., Melin, P., Ontiveros, E., et al.: A high-speed interval type 2 fuzzy system approach for dynamic parameter adaptation in metaheuristics. Eng. Appl. Artif. Intell. 85, 666–680 (2019). https://doi.org/10.1016/j.engappai.2019.07.020

    Article  Google Scholar 

  2. El-Nagar, A.M., El-Bardini, M., El-Rabaie, N.M.: Intelligent control for nonlinear inverted pendulum based on interval type-2 fuzzy PD controller. Alex Eng. J. 53(1), 23–32 (2014). https://doi.org/10.1016/j.aej.2013.11.006

    Article  Google Scholar 

  3. Maowen, N, Woei, W.T.: Towards an efficient type-reduction method for interval type-2 fuzzy logic systems. In: 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence). IEEE, pp. 1425–1432 (2008). https://doi.org/10.1109/FUZZY.2008.4630559

  4. Ontiveros, E., Melin, P., Castillo, O.: Impact study of the footprint of uncertainty in control applications based on interval type-2 fuzzy logic controllers. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications. Studies in Computational Intelligence, vol. 749, pp. 181–197. Springer, New York (2018). https://doi.org/10.1007/978-3-319-71008-2_15

    Chapter  Google Scholar 

  5. Ontiveros, E., Melin, P., Castillo, O.: Comparative study of interval Type-2 and general Type-2 fuzzy systems in medical diagnosis. Inf. Sci. 525, 37–53 (2020). https://doi.org/10.1016/j.ins.2020.03.059

    Article  MathSciNet  Google Scholar 

  6. Ontiveros-Robles, E., Melin, P., Castillo, O.: New methodology to approximate type-reduction based on a continuous root-finding Karnik Mendel Algorithm. Algorithms 10(3), 77 (2017). https://doi.org/10.3390/a10030077

    Article  MathSciNet  MATH  Google Scholar 

  7. Sanchez, M.A., Castillo, O., Castro, J.R.: Method for measurement of uncertainty applied to the formation of interval type-2 fuzzy sets. In: Melin, P., Castillo, O., Kacprzyk, J. (eds.) Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization. Studies in Computational Intelligence, vol. 601, pp. 13–25. Springer International Publishing, New York (2015). https://doi.org/10.1007/978-3-319-17747-2_2

    Chapter  Google Scholar 

  8. Sun, K., Jianbin, Q., Karimi, H.R., Fu, Y.: Event-triggered robust fuzzy adaptive finite-time control of nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2979129

    Article  Google Scholar 

  9. Doostparast Torshizi, A., Fazel Zarandi, M.H.: A new cluster validity measure based on general type-2 fuzzy sets: application in gene expression data clustering. Knowl.-Based Syst. 64, 81–93 (2014). https://doi.org/10.1016/j.knosys.2014.03.023

    Article  MATH  Google Scholar 

  10. Melin, P., Gonzalez, C.I., Castro, J.R., Mendoza, O., Castillo, O.: Edge-detection method for image processing based on generalized type-2 fuzzy logic. IEEE Trans. Fuzzy Syst. 22(6), 1515–1525 (2014). https://doi.org/10.1109/TFUZZ.2013.2297159

    Article  Google Scholar 

  11. Melin, P., Ontiveros-Robles, E., Gonzalez, C.I., Castro, J.R., Castillo, O.: An approach for parameterized shadowed type-2 fuzzy membership functions applied in control applications. Soft Comput. 23(11), 3887–3901 (2019). https://doi.org/10.1007/s00500-018-3503-4

    Article  MATH  Google Scholar 

  12. Ontiveros-Robles, E., Melin, P.: A hybrid design of shadowed type-2 fuzzy inference systems applied in diagnosis problems. Eng. Appl. Artif. Intell. 86, 43–55 (2019). https://doi.org/10.1016/j.engappai.2019.08.017

    Article  Google Scholar 

  13. Ontiveros-Robles, E., Melin, P.: Toward a development of general type-2 fuzzy classifiers applied in diagnosis problems through embedded type-1 fuzzy classifiers. Soft Comput. 24(1), 83–99 (2020). https://doi.org/10.1007/s00500-019-04157-2

    Article  Google Scholar 

  14. Yu, Q., Dian, S., Li, Y., Liu, J., Zhao, T.: Similarity-based non-singleton general type-2 fuzzy logic controller with applications to mobile two-wheeled robots. J. Intell. Fuzzy Syst. 37(5), 6841–6854 (2019). https://doi.org/10.3233/JIFS-190683

    Article  Google Scholar 

  15. Sun, K., Liu, L., Qiu, J., Feng, G.: Fuzzy adaptive finite-time fault-tolerant control for strict-feedback nonlinear systems. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2965890

    Article  Google Scholar 

  16. Wagner, C., Hagras, H.: Toward general type-2 fuzzy logic systems based on zSlices. IEEE Trans. Fuzzy Syst. 18(4), 637–660 (2010). https://doi.org/10.1109/TFUZZ.2010.2045386

    Article  Google Scholar 

  17. Coupland, S., John, R.: Geometric type-1 and type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 15(1), 3–15 (2007). https://doi.org/10.1109/TFUZZ.2006.889764

    Article  MATH  Google Scholar 

  18. Mendel, J.M., Liu, F., Zhai, D.: $alpha$-plane representation for type-2 fuzzy sets: theory and applications. IEEE Trans. Fuzzy Syst. 17(5), 1189–1207 (2009). https://doi.org/10.1109/TFUZZ.2009.2024411

    Article  Google Scholar 

  19. Ontiveros, E., Melin, P., Castillo, O.: High order α -planes integration: a new approach to computational cost reduction of general type-2 fuzzy systems. Eng. Appl. Artif. Intell. 74, 186–197 (2018). https://doi.org/10.1016/j.engappai.2018.06.013

    Article  Google Scholar 

  20. Juang, C.F., Juang, K.J.: Circuit implementation of data-driven TSK-type interval type-2 neural fuzzy system with online parameter tuning ability. IEEE Trans. Ind. Electron. 64(5), 4266–4275 (2017). https://doi.org/10.1109/TIE.2016.2574300

    Article  Google Scholar 

  21. Li, H., Wang, J., Lam, H.K., Zhou, Q., Du, H.: Adaptive sliding mode control for interval type-2 fuzzy systems. IEEE Trans. Syst. Man Cybern. Syst. 46(12), 1654–1663 (2016). https://doi.org/10.1109/TSMC.2016.2531676

    Article  Google Scholar 

  22. Khooban, M.H., Vafamand, N., Liaghat, A., Dragicevic, T.: An optimal general type-2 fuzzy controller for Urban Traffic Network. ISA Trans. 66, 335–343 (2017). https://doi.org/10.1016/j.isatra.2016.10.011

    Article  Google Scholar 

  23. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  24. Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006). https://doi.org/10.1109/TFUZZ.2006.879986

    Article  Google Scholar 

  25. Mendel, J.M., John, R.I.B.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002). https://doi.org/10.1109/91.995115

    Article  Google Scholar 

  26. Mendel, J.M.: General type-2 fuzzy logic systems made simple: a tutorial. IEEE Trans. Fuzzy Syst. 22(5), 1162–1182 (2014). https://doi.org/10.1109/TFUZZ.2013.2286414

    Article  Google Scholar 

  27. Dimov, I., Fidanova, S., Lirkov, I (eds).: Numerical Methods and Applications: 8th International Conference, NMA 2014, Borovets, Bulgaria, August 20–24, 2014, Revised Selected Papers. Springer International Publishing; 2015. Accessed 20 June 2018. www.springer.com/la/book/9783319155845

  28. Sandu, A.: A Newton-Cotes quadrature approach for solving the aerosol coagulation equation. Atmos. Environ. 36(3), 583–589 (2002). https://doi.org/10.1016/S1352-2310(01)00444-7

    Article  Google Scholar 

  29. Li, W., Wang, L., Yu, G.: An accurate and fast milling stability prediction approach based on the Newton-Cotes rules. Int. J. Mech. Sci. 177, 105469 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105469

    Article  Google Scholar 

  30. Tostado-Véliz, M., Kamel, S., Jurado, F.: A powerful power-flow method based on Composite Newton-Cotes formula for ill-conditioned power systems. Int. J. Electr. Power Energy Syst. 116, 105558 (2020). https://doi.org/10.1016/j.ijepes.2019.105558

    Article  Google Scholar 

  31. Roose, A.I., Yahya, S., Al-Rizzo, H.: Fuzzy-logic control of an inverted pendulum on a cart. Comput. Electr. Eng. 61, 31–47 (2017). https://doi.org/10.1016/j.compeleceng.2017.05.016

    Article  Google Scholar 

  32. Bakaráč, P., Klaučo, M., Fikar, M.: Comparison of inverted pendulum stabilization with PID, LQ, and MPC control. In: 2018 Cybernetics Informatics (K I), pp. 1–6 (2018). https://doi.org/10.1109/CYBERI.2018.8337540

  33. Bui, G.T., Bui, V.B.: Integrated design of control and diagnosis for visual feedback inverted pendulum system. In: 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1574–1578 (2018). https://doi.org/10.1109/ICIEA.2018.8397960

  34. Verma, V.K., Appasani, B., Gupta, P., Ranjan, R.K.: GA based design of CCII PID controller for an inverted pendulum system. In: 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), pp. 2721–2723 (2017). https://doi.org/10.1109/ICPCSI.2017.8392212

  35. Gonzalez, C.I., Melin, P., Castro, J.R., Mendoza, O., Castillo, O.: An improved sobel edge detection method based on generalized type-2 fuzzy logic. Soft Comput. 20(2), 773–784 (2016). https://doi.org/10.1007/s00500-014-1541-0

    Article  Google Scholar 

  36. Gonzalez, C.I., Castro, J.R., Mendoza, O., Rodríguez-Díaz, A., Melin, P., Castillo, O.: Edge detection method based on interval type-2 fuzzy systems for color images. In: 2015 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS) Held Jointly with 2015 5th World Conference on Soft Computing (WConSC), pp. 1–6 (2015). https://doi.org/10.1109/NAFIPS-WConSC.2015.7284204

  37. Mendoza, O., Melin, P., Licea, G.: A new method for edge detection in image processing using interval type-2 fuzzy logic. In: 2007 IEEE International Conference on Granular Computing (GRC 2007), pp. 151–151 (2007). https://doi.org/10.1109/GrC.2007.115

  38. Ontiveros-Robles, E., Gonzalez-Vazquez, J.L., Castro, J.R., Castillo, O.: A hardware architecture for real-time edge detection based on interval type-2 fuzzy logic. In: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 804–810. https://doi.org/10.1109/FUZZ-IEEE.2016.7737770 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ontiveros-Robles, E., Melin, P. & Castillo, O. An Efficient High-Order α-Plane Aggregation in General Type-2 Fuzzy Systems Using Newton–Cotes Rules. Int. J. Fuzzy Syst. 23, 1102–1121 (2021). https://doi.org/10.1007/s40815-020-01031-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-01031-4

Keywords

Navigation