Skip to main content
Log in

Electrically Stimulated Lower Limb using a Takagi-Sugeno Fuzzy Model and Robust Switched Controller Subject to Actuator Saturation and Fault under Nonideal Conditions

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Electrically stimulated lower limb systems contain higher order nonlinearities and uncertainties in their physical parameters. Takagi-Sugeno (TS) fuzzy models are used to model nonlinear systems. Techniques such as parallel distributed compensation (PDC) are dependent on the membership functions that constitute the TS fuzzy model. When the exact representation approach is used to electrical stimulation applications, the system’s performance under PDC control can be deteriorated, because the membership functions may be uncertain, besides a high computational cost be required to compute them. In this paper, we propose a robust switched control subject to actuator saturation and fault (RSwASF) that effectively handles system uncertainties and nonidealities, such as fatigue, spasms, tremor, and muscle recruitment. Control techniques based on TS fuzzy modeling (PDC and robust PDC), as well as other approaches, such as sliding-mode control, backstepping, super-twisting, gain-scheduling, and proportional-integral-derivative (PID) control were compared to RSwASF through the root-mean-squared error (RMSE). The results indicate that RSwASF minimizes the influence of the parametric uncertainties and presents the lowest RMSE for healthy and paraplegic individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Benahmed, S., Tadjine, M., Kermia, O.: Comparative study of non-linear controllers for the regulation of the paraplegic knee movement using functional electrical stimulation. J. Mech. Med. Biol. 18(05), 1850019 (2018). https://doi.org/10.1142/S0219519418500197

    Article  Google Scholar 

  2. Downey, R.J., Cheng, T.H., Bellman, M.J., Dixon, W.E.: Switched tracking control of the lower limb during asynchronous neuromuscular electrical stimulation: theory and experiments. IEEE Trans. Cybern. 47(5), 1251–1262 (2017). https://doi.org/10.1109/TCYB.2016.2543699

    Article  Google Scholar 

  3. Gaino, R., Covacic, M.R., Cardim, R., Sanches, M.A.A., De Carvalho, A.A., Biazeto, A.R., Teixeira, M.C.M.: Discrete Takagi-Sugeno fuzzy models applied to control the knee joint movement of paraplegic patients. IEEE Access 8, 32714–32726 (2020). https://doi.org/10.1109/ACCESS.2020.2971908

    Article  Google Scholar 

  4. Gaino, R., Covacic, M.R., Teixeira, M.C.M., Cardim, R., Assunção, E., de Carvalho, A.A., Sanches, M.A.A.: Electrical stimulation tracking control for paraplegic patients using T-S fuzzy models. Fuzzy Sets Syst. 314, 1–23 (2017). https://doi.org/10.1016/j.fss.2016.06.005

    Article  MathSciNet  MATH  Google Scholar 

  5. Kirsch, N., Alibeji, N., Sharma, N.: Nonlinear model predictive control of functional electrical stimulation. Control Eng. Pract. 58, 319–331 (2017). https://doi.org/10.1016/j.conengprac.2016.03.005

    Article  Google Scholar 

  6. Teodoro, R.G., Nunes, W.R.B.M., de Araujo, R.A., Sanches, M.A.A., Teixeira, M.C.M., Carvalho, A.A.D.: Robust switched control design for electrically stimulated lower limbs: a linear model analysis in healthy and spinal cord injured subjects. Control Eng. Pract. 102, 104530 (2020). https://doi.org/10.1016/j.conengprac.2020.104530

    Article  Google Scholar 

  7. Yang, R., de Queiroz, M.: Robust adaptive control of the nonlinearly parameterized human shank dynamics for electrical stimulation applications. J. Dyn. Syst. Meas. Control 140(8), 1–15 (2018). https://doi.org/10.1115/1.4039366

    Article  Google Scholar 

  8. Bao, X., Molazadeh, V., Dodson, A., Dicianno, B.E., Sharma, N.: Using person-specific muscle fatigue characteristics to optimally allocate control in a hybrid exoskeleton-preliminary results. IEEE Trans. Med. Robot. Bion. 2(2), 226–235 (2020). https://doi.org/10.1109/TMRB.2020.2977416

    Article  Google Scholar 

  9. Bao, X., Molazadeh, V., Dodson, A.: Model predictive control-based knee actuator allocation during a standing-up motion with a powered. Adv. Motor Neuroprosthese (2020). https://doi.org/10.1007/978-3-030-38740-2_6

    Article  Google Scholar 

  10. Kobravi, H.R., Erfanian, A.: A decentralized adaptive fuzzy robust strategy for control of upright standing posture in paraplegia using functional electrical stimulation. Med. Eng. Phys. 34(1), 28–37 (2012). https://doi.org/10.1016/j.medengphy.2011.06.013

    Article  Google Scholar 

  11. Riener, R., Fuhr, T.: Patient-driven control of FES-supported standing up: a simulation study. IEEE Trans. Rehabil. Eng. 6(2), 113–124 (1998). https://doi.org/10.1109/86.681177

    Article  Google Scholar 

  12. Bo, A.P.L., Lopes, A.C.G., da Fonseca, L.O., Ochoa-Diaz, C., Azevedo-Coste, C., Fachin-Martins, E.: Experimental results and design considerations for FES-assisted transfer for people with spinal cord injury. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01845-0_189

    Book  Google Scholar 

  13. Jovic, J., Azevedo Coste, C., Fraisse, P., Henkous, S., Fattal, C.: Coordinating upper and lower body during FES-assisted transfers in persons with spinal cord injury in order to reduce arm support. Neuromodul. Technol. Neural Interface 18(8), 736–743 (2015). https://doi.org/10.1111/ner.12286

    Article  Google Scholar 

  14. Jovic, J., Bonnet, V., Fattal, C., Fraisse, P., Coste, C.A.: A new 3d center of mass control approach for FES-assisted standing: first experimental evaluation with a humanoid robot. Med. Eng. Phys. 38(11), 1270–1278 (2016). https://doi.org/10.1016/j.medengphy.2016.09.002

    Article  Google Scholar 

  15. de Abreu, D.C.C., Cliquet, A., Rondina, J.M., Cendes, F.: Electrical stimulation during gait promotes increase of muscle cross-sectional area in quadriplegics: a preliminary study. Clin. Orthop. Related Res. 467(2), 553 (2009). https://doi.org/10.1007/s11999-008-0496-9

    Article  Google Scholar 

  16. Alibeji, N., Kirsch, N., Sharma, N.: An adaptive low-dimensional control to compensate for actuator redundancy and fes-induced muscle fatigue in a hybrid neuroprosthesis. Control Eng. Pract. 59, 204–219 (2017). https://doi.org/10.1016/j.conengprac.2016.07.015

    Article  Google Scholar 

  17. Alibeji, N.A., Molazadeh, V., Dicianno, B.E., Sharma, N.: A control scheme that uses dynamic postural synergies to coordinate a hybrid walking neuroprosthesis: theory and experiments. Front. Neurosci. 12, 159 (2018). https://doi.org/10.3389/fnins.2018.00159

    Article  Google Scholar 

  18. Granat, M., Ferguson, A., Andrews, B., Delargy, M.: The role of functional electrical stimulation in the rehabilitation of patients with incomplete spinal cord injury-observed benefits during gait studies. Spinal Cord 31(4), 207–215 (1993). https://doi.org/10.1038/sc.1993.39

    Article  Google Scholar 

  19. Ha, K.H., Murray, S.A., Goldfarb, M.: An approach for the cooperative control of FES with a powered exoskeleton during level walking for persons with paraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 24(4), 455–466 (2016). https://doi.org/10.1109/TNSRE.2015.2421052

    Article  Google Scholar 

  20. Kirsch, N.A., Bao, X., Alibeji, N.A., Dicianno, B.E., Sharma, N.: Model-based dynamic control allocation in a hybrid neuroprosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 26(1), 224–232 (2017). https://doi.org/10.1109/TNSRE.2017.2756023

    Article  Google Scholar 

  21. Kralj, A., Bajd, T., Turk, R.: Enhancement of gait restoration in spinal injured patients by functional electrical stimulation. Clin. Orthop. Relat. Res. 233, 34–43 (1988)

    Article  Google Scholar 

  22. Sharma, N., Mushahwar, V., Stein, R.: Dynamic optimization of FES and orthosis-based walking using simple models. IEEE Trans. Neural Syst. Rehabil. Eng. 22(1), 114–126 (2014). https://doi.org/10.1109/TNSRE.2013.2280520

    Article  Google Scholar 

  23. Wiesener, C., Axelgaard, J., Horton, R., Niedeggen, A., Schauer, T.: Functional electrical stimulation assisted swimming for paraplegics. In: 22nd Annual IFESS Conference, pp. 1–4 (2018)

  24. Wiesener, C., Spieker, L., Axelgaard, J., Horton, R., Niedeggen, A., Wenger, N., Seel, T., Schauer, T.: Supporting front crawl swimming in paraplegics using electrical stimulation: a feasibility study. Journal of NeuroEngineering and Rehabilitation 17, 1–14 (2020). https://doi.org/10.1186/s12984-020-00682-6

    Article  Google Scholar 

  25. Andrews, B., Gibbons, R., Wheeler, G.: Development of functional electrical stimulation rowing: the rowstim series. Artif. Organs 41(11), E203–E212 (2017). https://doi.org/10.1111/aor.13053

    Article  Google Scholar 

  26. Lambach, R.L., Stafford, N.E., Kolesar, J.A., Kiratli, B.J., Creasey, G.H., Gibbons, R.S., Andrews, B.J., Beaupre, G.S.: Bone changes in the lower limbs from participation in an fes rowing exercise program implemented within two years after traumatic spinal cord injury. J. Spinal Cord Med. 43(3), 306–314 (2020). https://doi.org/10.1080/10790268.2018.1544879

    Article  Google Scholar 

  27. Bellman, M.J., Cheng, T.H., Downey, R.J., Hass, C.J., Dixon, W.E.: Switched control of cadence during stationary cycling induced by functional electrical stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 24(12), 1373–1383 (2016). https://doi.org/10.1109/TNSRE.2015.2500180

    Article  Google Scholar 

  28. Bo, A.P.L., da Fonseca, L.O., Guimaraes, J.A., Fachin-Martins, E., Paredes, M.E.G., Brindeiro, G.A., de Sousa, A.C.C., Dorado, M.C.N., Ramos, F.M.: Cycling with spinal cord injury: a novel system for cycling using electrical stimulation for individuals with paraplegia, and preparation for Cybathlon 2016. IEEE Robot. Autom. Mag. 24(4), 58–65 (2017). https://doi.org/10.1109/MRA.2017.2751660

    Article  Google Scholar 

  29. Fonseca, L.O., Bó, A.P., Guimarães, J.A., Gutierrez, M.E., Fachin-Martins, E.: Cadence tracking and disturbance rejection in functional electrical stimulation cycling for paraplegic subjects: a case study. Artif. Organs 41(11), E185–E195 (2017). https://doi.org/10.1111/aor.13055

    Article  Google Scholar 

  30. McDaniel, J., Lombardo, L.M., Foglyano, K.M., Marasco, P.D., Triolo, R.J.: Setting the pace: insights and advancements gained while preparing for an FES bike race. J. NeuroEng. Rehabil. 14(1), 1–8 (2017). https://doi.org/10.1186/s12984-017-0326-y

    Article  Google Scholar 

  31. Marquez-Chin, C., Popovic, M.R.: Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review. BioMed. Eng. Online 19, 1–25 (2020). https://doi.org/10.1186/s12938-020-00773-4

    Article  Google Scholar 

  32. Ferrarin, M., Palazzo, F., Riener, R., Quintern, J.: Model-based control of FES induced single joint movements. IEEE Trans. Neural Syst. Rehabil. Eng. 9(3), 245–257 (2001). https://doi.org/10.1109/7333.948452

    Article  Google Scholar 

  33. Ferrante, S., Pedrocchi, A., Iannò, M., De Momi, E., Ferrarin, M., Ferrigno, G.: Functional electrical stimulation controlled by artificial neural networks: pilot experiments with simple movements are promising for rehabilitation applications. Functi. Neurol. 19(4), 243–252 (2004)

    Google Scholar 

  34. Sharma, N., Kirsch, N.A., Alibeji, N.A., Dixon, W.E.: A non-linear control method to compensate for muscle fatigue during neuromuscular electrical stimulation. Front. Robot. AI 4, 68 (2017). https://doi.org/10.3389/frobt.2017.00068

    Article  Google Scholar 

  35. Covacic, M.R., Teixeira, M.C.M., Carvalho, A.A.D., Cardim, R., Assunção, E., Sanches, M.A.A., Fujimoto, H.S., Mineo, M.S., Biazeto, A.R., Gaino, R.: Robust TS fuzzy control of electrostimulation for paraplegic patients considering norm-bounded uncertainties. Math. Probl. Eng. (2020). https://doi.org/10.1155/2020/4624657

    Article  MathSciNet  MATH  Google Scholar 

  36. Mohammed, S., Poignet, P., Fraisse, P., Guiraud, D.: Toward lower limbs movement restoration with input-output feedback linearization and model predictive control through functional electrical stimulation. Control Eng. Pract. 20(2), 182–195 (2012). https://doi.org/10.1016/J.CONENGPRAC.2011.10.010

    Article  Google Scholar 

  37. Wang, Q., Sharma, N., Johnson, M., Gregory, C.M., Dixon, W.E.: Adaptive inverse optimal neuromuscular electrical stimulation. IEEE Trans. Cybern. 43(6), 1710–1718 (2013). https://doi.org/10.1109/TSMCB.2012.2228259

    Article  Google Scholar 

  38. Ajoudani, A., Erfanian, A.: A neuro-sliding mode control with adaptive modeling of uncertainty for control of movement in paralyzed limbs using functional electrical stimulation. IEEE Trans. Biomed. Eng. 56(7), 1771–1780 (2009). https://doi.org/10.1109/TBME.2009.2017030

    Article  Google Scholar 

  39. Lynch, C.L., Popovic, M.R.: A comparison of closed-loop control algorithms for regulating electrically stimulated knee movements in individuals with spinal cord injury. IEEE Trans. Neural Syst. Rehabil. Eng. 20(4), 539–548 (2012). https://doi.org/10.1109/TNSRE.2012.2185065

    Article  Google Scholar 

  40. Ferrarin, M., Pedotti, A.: The relationship between electrical stimulus and joint torque: a dynamic model. IEEE Tran. Rehabil. Eng. 8(3), 342–352 (2000). https://doi.org/10.1109/86.867876

    Article  Google Scholar 

  41. Lynch, C.L., Graham, G.M., Popovic, M.R.: A generic model of real-world non-ideal behaviour of FES-induced muscle contractions: simulation tool. J. Neural Eng. (2011). https://doi.org/10.1088/1741-2560/8/4/046034

    Article  Google Scholar 

  42. Klug, M., Castelan, E.B., Leite, V.J., Silva, L.F.: Fuzzy dynamic output feedback control through nonlinear Takagi-Sugeno models. Fuzzy Sets Syst. 263, 92–111 (2015). https://doi.org/10.1016/J.FSS.2014.05.019

    Article  MathSciNet  MATH  Google Scholar 

  43. Taniguchi, T., Tanaka, K., Ohtake, H., Wang, H.O.: Model construction, rule reduction, and robust compensation for generalized form of Takagi-Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 9(4), 525–538 (2001). https://doi.org/10.1109/91.940966

    Article  Google Scholar 

  44. Alves, U.N.L.T., Teixeira, M.C.M., Oliveira, D.R., Cardim, R., Assunção, E., Souza, W.A.D.: Smoothing switched control laws for uncertain nonlinear systems subject to actuator saturation. Int. J. Adapt. Control Signal Process. 30(8–10), 1408–1433 (2016). https://doi.org/10.1002/acs.2671

    Article  MathSciNet  MATH  Google Scholar 

  45. de Oliveira, D.R., Teixeira, M.C.M., Alves, U.N.L.T., de Souza, W.A., Assunção, E., Cardim, R.: On local Hoo switched controller design for uncertain T-S fuzzy systems subject to actuator saturation with unknown membership functions. Fuzzy Sets Syst. 1, 1–26 (2017). https://doi.org/10.1016/j.fss.2017.12.004

    Article  MATH  Google Scholar 

  46. Santim, M.P.A., Teixeira, M.C.M., Souza, W.A.D., Cardim, R., Assuncao, E.: Design of a Takagi-Sugeno fuzzy regulator for a set of operation points. Math. Probl. Eng. (2012). https://doi.org/10.1155/2012/731298

    Article  MathSciNet  MATH  Google Scholar 

  47. Souza, W.A.D., Teixeira, M.C.M., Cardim, R., Assunção, E.: On switched regulator design of uncertain nonlinear systems using Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 22(6), 1720–1727 (2014). https://doi.org/10.1109/TFUZZ.2014.2302494

    Article  Google Scholar 

  48. Zhou, B.: Analysis and design of discrete-time linear systems with nested actuator saturations. Syst. Control Lett. 62(10), 871–879 (2013). https://doi.org/10.1016/J.SYSCONLE.2013.06.012

    Article  MathSciNet  MATH  Google Scholar 

  49. Hu, T., Lin, Z., Chen, B.M.: An analysis and design method for linear systems subject to actuator saturation and disturbance. Automatica 38, 351–359 (2002). https://doi.org/10.1016/S0005-1098(01)00209-6

    Article  MATH  Google Scholar 

  50. Cao, Y.Y., Lin, Z.: Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation. IEEE Trans. Fuzzy Syst. 11(1), 57–67 (2003). https://doi.org/10.1109/TFUZZ.2002.806317

    Article  Google Scholar 

  51. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory, 15th edn. SIAM, Portland (1994)

    Book  Google Scholar 

  52. Lofberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB. In: 2004 IEEE International Symposium on Robotics and Automation, pp. 284–289. IEEE (2004). https://doi.org/10.1109/CACSD.2004.1393890

  53. Gahinet, P., Nemirovskii, A., Laub, A.J., Chilali, M.: The LMI control toolbox. In: Proceedings of the 1994 33rd IEEE Conference on Decision and Control, vol. 3, pp. 2038–2041. IEEE (1994). https://doi.org/10.1109/CDC.1994.411440

  54. Al Kouzbary, M., Abu Osman, N.A., Al Kouzbary, H., Shasmin, H.N., Arifin, N.: Towards universal control system for powered ankle-foot prosthesis: a simulation study. Int. J. Fuzzy Syst. 22(4), 1299–1313 (2020). https://doi.org/10.1007/s40815-020-00855-4

    Article  Google Scholar 

  55. Wang, G., Jia, R., Song, H., Liu, J.: Stabilization of unknown nonlinear systems with TS fuzzy model and dynamic delay partition. J. Intell. Fuzzy Syst. 35(2), 2079–2090 (2018). https://doi.org/10.3233/JIFS-172012

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil) - Finance Code 001; by the Brazilian National Council for Scientific and Technological Development (CNPq) under research fellowships 309.872/2018-9 and 312.170/2018-1. The authors would like to thank Enago for English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willian Ricardo Bispo Murbak Nunes.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, W.R.B.M., Alves, U.N.L.T., Sanches, M.A.A. et al. Electrically Stimulated Lower Limb using a Takagi-Sugeno Fuzzy Model and Robust Switched Controller Subject to Actuator Saturation and Fault under Nonideal Conditions. Int. J. Fuzzy Syst. 24, 57–72 (2022). https://doi.org/10.1007/s40815-021-01115-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01115-9

Keywords

Navigation