Skip to main content

Advertisement

Log in

Battery-Supercapacitor State-of-Health Estimation for Hybrid Energy Storage System Using a Fuzzy Brain Emotional Learning Neural Network

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This study proposes an efficient estimator and uses it to estimate the health of a lithium-ion battery and a supercapacitor in the hybrid energy storage system (HESS). A new type of online health estimator that uses a fuzzy brain emotional learning neural network (FBELNN) is proposed. This neural network is different to a conventional brain emotional learning neural network where the fuzzy inference system and a new reward signal are used. The effect capacity fading on the output of energy storage components is also determined. The proposed method uses a discrete wavelet transform (DWT) and principal component analysis (PCA) to extract features from the response signal for the impulse load. The DWT-PCA can reduce the workload for feature extraction. The parameter adaptation laws and convergence analysis for the FBELNN are derived and the internal parameters for the FBELNN are optimized using a genetic algorithm (GA). A neural network estimates the capacity of a supercapacitor and lithium-ion battery in real-time to better ensure the safety of HESS. The sample set is collected from the voltage response signal in the HESS simulation platform and practical experimental platform. Simulation and experimental results show that the proposed method has a faster learning speed and is more accurate than other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Jing, W., Hung Lai, C., Wong, S.H.W., Wong, M.L.D.: "Battery-supercapacitor hybrid energy storage system in standalone DC microgrids: a review. IET Renew. Power Gener. 11(4), 461–469 (2017)

    Article  Google Scholar 

  2. Song, Z., Hou, J., Hofmann, H., Lin, X., Sun, J.: Parameter identification and maximum power estimation of battery/ supercapacitor hybrid energy storage system based on Cramer-Rao bound analysis. IEEE Trans. Power Electron. 34(7), 4831–4843 (2019)

    Article  Google Scholar 

  3. El Mejdoubi, A., Chaoui, H., Gualous, H., Sabor, J.: Online parameter identification for supercapacitor state-of-health diagnosis for vehicular applications. IEEE Trans. Power Electron. 32(12), 9355–9363 (2017)

    Article  Google Scholar 

  4. Kotra, S., Mishra, M.K.: Design and stability analysis of DC microgrid with hybrid energy storage system. IEEE Trans. Sust. Energy 10(3), 1603–1612 (2019)

    Article  Google Scholar 

  5. Etxeberria, A., Vechiu, I., Camblong, H., Vinassa, J.M.: Hybrid energy storage systems for renewable energy sources integration in microgrids: a review, In: 2010 International Power Electronics Conference, pp. 532–537 (2010)

  6. Lawder, M.T., Suthar, B., Northrop, P.W.C., De, S., Hoff, C.M., Leitermann, O., Crow, M.L., Santhanagopalan, S., Subramanian, V.R.: Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications. Proc. IEEE 102(6), 1014–1030 (2014)

    Article  Google Scholar 

  7. German, R., Hammar, A., Lallemand, R., Sari, A., Venet, P.: Novel experimental identification method for a supercapacitor multipore model in order to monitor the state of health. IEEE Trans. Power Electron. 31(1), 548–559 (2016)

    Article  Google Scholar 

  8. Zhang, L., Hu, X., Wang, Z., Sun, F., Dorrell, D.G.: A review of supercapacitor modeling estimation and applications: a control/management perspective. Renew. Sust. Energy Rev. 81, 1868–1878 (2018)

    Article  Google Scholar 

  9. Lin, Q., Chen, S., Lin, C.M.: Parametric fault diagnosis based on fuzzy cerebellar model neural networks. IEEE Trans. Ind. Electron. 66(10), 8104–8115 (2019)

    Article  Google Scholar 

  10. Zhou, Y., Huang, Y., Pang, J., Kai, W.: Remaining useful life prediction for supercapacitor based on long short-term memory neural network. J. Power Sources 440(15), 1–9 (2019)

    Google Scholar 

  11. Soualhi, A., Makdessi, M., German, R., Echeverria, F.R., Razik, H., Sari, A., Venet, P., Clerc, G.: Heath monitoring of capacitors and supercapacitors using the neo-fuzzy neural approach. IEEE Trans. Ind. Informat. 14(1), 24–34 (2018)

    Article  Google Scholar 

  12. Li, H., Pan, D., Chen, C.L.P.: Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine. IEEE Trans. Syst. Man Cybern. Syst. 44(7), 851–862 (2014)

    Article  Google Scholar 

  13. Wu, Y., Li, W., Wang, Y., Zhang, K.: Remaining useful life prediction of lithium-ion batteries using neural network and bat-based particle filter. IEEE Access 7, 54843–54854 (2019)

    Article  Google Scholar 

  14. Ünal, M., Onat, M., Demetgul, M., Kucuk, H.: Fault diagnosis of rolling bearings using a genetic algorithm optimized neural network. Measurement 58, 187–196 (2014)

    Article  Google Scholar 

  15. Chen, L., Wang, Z., Lü, Z., Li, J., Ji, B., Wei, H., Pan, H.: A novel state-of-charge estimation method of lithium-ion batteries combining the grey model and genetic algorithms. IEEE Trans. Power Electron. 33(10), 8797–8807 (2018)

    Article  Google Scholar 

  16. Sun, Y., Lin, C.M.: A fuzzy brain emotional learning classifier design and application in medical diagnosis. Acta Polytech. Hung. 16(4), 27–43 (2019)

    Google Scholar 

  17. LeDoux, J.E.: Emotion and the limbic system concept. Concepts Neurosci. 2, 169–199 (1991)

    Google Scholar 

  18. Lotfi, E., Akbarzadeh-T, M.R.: Practical emotional neural networks. Neural Netw. 59, 61–72 (2014)

    Article  Google Scholar 

  19. Morén, J., Balkenius, C.: Emotional learning: a computational model of the amygdala. Cybern. Syst. 32(6), 611–636 (2001)

    Article  Google Scholar 

  20. Zhou, Q., Chao, F., Lin, C.M.: A functional-link-based fuzzy brain emotional learning network for breast tumor classification and chaotic system synchronization. Int. J. Fuzzy Syst. 20(2), 349–365 (2018)

    Article  MathSciNet  Google Scholar 

  21. Soreshjani, M.H., Markadeh, G.A., Daryabeigi, E., Abjadi, N.R., Kargar, A.: Application of brain emotional learning-based intelligent controller to power flow control with thyristor-controlled series capacitance. IET Gener. Transm. Distrib. 9(14), 1964–1976 (2015)

    Article  Google Scholar 

  22. Xu, Z., Lin, Q., Lin, C.-M.: Online health estimate of hybrid energy storage system based on fuzzy brain emotional learning neural networks, In: 2020 International Conference on System Science and Engineering, pp. 511–516 (2020)

  23. Hu, Y., Wang, Y.: Two time-scaled battery model identification with application to battery state estimation. IEEE Trans. Control Syst. Technol. 23(3), 1180–1188 (2015)

    Article  Google Scholar 

  24. El Mejdoubi, A., Chaoui, H., Sabor, J., Gualous, H.: Remaining useful life prognosis of supercapacitors under temperature and voltage aging conditions. IEEE Trans. Ind. Electron. 65(5), 4357–4367 (2018)

    Article  Google Scholar 

  25. Ranjbar, A.H., Banaei, A., Khoobroo, A., Fahimi, B.: Online estimation of state of charge in Li-Ion batteries using impulse response concept. IEEE Trans. Smart Grid 3(1), 360–367 (2012)

    Article  Google Scholar 

  26. Ma, T., Yang, H., Lu, L.: Development of hybrid battery-supercapacitor energy storage for remote area renewable energy systems. Appl. Energy 153(1), 56–62 (2015)

    Article  Google Scholar 

  27. Chemali, E., Preindl, M., Malysz, P., Emadi, A.: Electrochemical and electrostatic energy storage and management systems for electric drive vehicles: state-of-the-art review and future trends. IEEE J. Emerg. Sel. Top. Power Electron. 4(3), 1117–1134 (2016)

    Article  Google Scholar 

  28. Lin, Q., Chen, S., Lin, C.M.: An optimization method for the initial parameters selection of fuzzy cerebellar model neural networks in parametric fault diagnosis. Int. J. Fuzzy Syst. 22(7), 2071–2082 (2020)

    Article  Google Scholar 

  29. Mehrabian, A.R., Lucas, C.: Emotional learning based intelligent robust adaptive controller for stable uncertain nonlinear systems. Int. J. Comput. Int. 2(4), 246–252 (2005)

    Google Scholar 

  30. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  Google Scholar 

  31. Ning, J., Wang, J., Gao, W., Liu, C.: A wavelet-based data compression technique for smart grid. IEEE Trans. Smart Grid 2(1), 212–218 (2011)

    Article  Google Scholar 

  32. Li, W., Monti, A., Ponci, F.: Fault detection and classification in medium voltage DC shipboard power systems with wavelets and artificial neural networks. IEEE Trans. Instrum. Meas. 63(11), 2651–2665 (2014)

    Article  Google Scholar 

  33. You, D., Gao, X., Katayama, S.: WPD-PCA-based laser welding process monitoring and defects diagnosis by using FNN and SVM. IEEE Trans. Ind. Electron. 62(1), 628–636 (2015)

    Article  Google Scholar 

  34. Wai, R.J., Chen, P.C.: Robust neural-fuzzy-network control for robot manipulator including actuator dynamics. IEEE Trans. Ind. Electron 53(4), 1328–1349 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support in part from Technology Innovation Fund Support Project by the company of Kehua Hengsheng under Grant KHHS20170416 and from the Ministry of Science and Technology of the Republic of China under Grant MOST 106-2221-E-155-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Min Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Q., Xu, Z. & Lin, CM. Battery-Supercapacitor State-of-Health Estimation for Hybrid Energy Storage System Using a Fuzzy Brain Emotional Learning Neural Network. Int. J. Fuzzy Syst. 24, 12–26 (2022). https://doi.org/10.1007/s40815-021-01120-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01120-y

Keywords

Navigation