Skip to main content
Log in

Observer-Based Adaptive Fuzzy Output Feedback Control for a Class of Fractional-Order Nonlinear Systems with Full-State Constraints

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This article focuses on adaptive fuzzy output feedback control for a class of fractional-order uncertain nonlinear strict-feedback systems with unmeasured states and full-state constraints. Fuzzy-logic systems are employed to approximate uncertain nonlinear functions, and a fractional-order fuzzy state observer based on the structure of the considered systems is framed to estimate the unmeasurable states. In each step of backstepping procedure, a barrier Lyapunov function is introduced in the design of the controller and the adaptation laws to satisfy the condition of the state constraints. Based on the fractional-order Lyapunov stability theory, a fractional-order adaptive fuzzy controller is constructed to guarantee that all the states remain in their constraint bounds, the tracking error converges to a bounded compact set containing the origin, and all signals in the closed-loop system are ensured to be bounded. Finally, a simulation example verifies the effectiveness of the proposed control design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991)

    Article  Google Scholar 

  2. Wang, Z.-P., Wu, H.-N.: Sampled-data fuzzy control with guaranteed cost for nonlinear parabolic pde systems via static output feedback. IEEE Trans. Fuzzy Syst. 28(10), 2452–2465 (2020). https://doi.org/10.1109/TFUZZ.2019.2939961

    Article  Google Scholar 

  3. Chen, B., Liu, X., Liu, K., Lin, C.: Direct adaptive fuzzy control of nonlinear strict-feedback systems. Automatica 45(6), 1530–1535 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, Z.-P., Wu, H.-N., Huang, T.: Sampled-data fuzzy control for nonlinear delayed distributed parameter systems. IEEE Trans. Fuzzy Syst. 1, 1 (2020). https://doi.org/10.1109/TFUZZ.2020.3012392

    Article  Google Scholar 

  5. Lee, T.H., Harris, C.J.: Adaptive Neural Network Control of Robotic Manipulators, vol. 19. World Scientific, Singapore (1998)

    Google Scholar 

  6. Zhang, T., Ge, S.S., Hang, C.C.: Adaptive neural network control for strict-feedback nonlinear systems using backstepping design. Automatica 36(12), 1835–1846 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tang, J., Yu, S., Liu, F., Chen, X., Huang, H.: A hierarchical prediction model for lane-changes based on combination of fuzzy c-means and adaptive neural network. Expert Syst. Appl. 130, 265–275 (2019)

    Article  Google Scholar 

  8. Xia, J., Li, B., Su, S., Sun, W., Shen, H.: Finite-time command filtered event-triggered adaptive fuzzy tracking control for stochastic nonlinear systems. IEEE Trans. Fuzzy Syst. 1, 1 (2020)

    Google Scholar 

  9. Yu, X., He, W., Li, H., Sun, J.: Adaptive fuzzy full-state and output-feedback control for uncertain robots with output constraint. IEEE Trans. Syst. Man Cybern. 1, 14 (2020)

    Google Scholar 

  10. Li, K., Li, Y.M., Zong, G.: Adaptive fuzzy fixed-time decentralized control for stochastic nonlinear systems. IEEE Trans. Fuzzy Syst. 1, 1 (2020)

    Google Scholar 

  11. Wang, Z.-P., Wu, H.-N., Li, H.-X.: Fuzzy control under spatially local averaged measurements for nonlinear distributed parameter systems with time-varying delay. IEEE Trans. Cybern. 51(3), 1359–1369 (2021). https://doi.org/10.1109/TCYB.2019.2916656

    Article  Google Scholar 

  12. Wang, Z.-P., Wu, H.-N., Huang, T.: Spatially local piecewise fuzzy control for nonlinear delayed dpss with random packet losses. IEEE Trans. Fuzzy Syst. (2021). https://doi.org/10.1109/TFUZZ.2021.3061142

    Article  Google Scholar 

  13. Ma, H., Li, H., Liang, H., Dong, G.: Adaptive fuzzy event-triggered control for stochastic nonlinear systems with full state constraints and actuator faults. IEEE Trans. Fuzzy Syst. 27(11), 2242–2254 (2019)

    Article  Google Scholar 

  14. Sun, W., Su, S., Wu, Y., Xia, J., Nguyen, V.: Adaptive fuzzy control with high-order barrier Lyapunov functions for high-order uncertain nonlinear systems with full-state constraints. IEEE Transactions on Cybernetics 50(8), 3424–3432 (2020)

    Article  Google Scholar 

  15. Wang, W., Tong, S.: Adaptive fuzzy containment control of nonlinear strict-feedback systems with full state constraints. IEEE Trans. Fuzzy Syst. 27(10), 2024–2038 (2019)

    Article  Google Scholar 

  16. Zhao, K., Song, Y., Zhang, Z.: Tracking control of mimo nonlinear systems under full state constraints: a single-parameter adaptation approach free from feasibility conditions. Automatica 107, 52–60 (2019). https://doi.org/10.1016/j.automatica.2019.05.032

    Article  MathSciNet  MATH  Google Scholar 

  17. Qiu, J., Sun, K., Rudas, I.J., Gao, H.: Command filter-based adaptive nn control for mimo nonlinear systems with full-state constraints and actuator hysteresis. IEEE Trans. Cybern. 50(7), 2905–2915 (2020)

    Article  Google Scholar 

  18. Freeborn, T.J., Maundy, B., Elwakil, A.S.: Fractional-order models of supercapacitors, batteries and fuel cells: a survey. Mater. Renew. Sustain. Energy 4(3), 9 (2015)

    Article  MATH  Google Scholar 

  19. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  20. Shen, J., Lam, J.: Non-existence of finite-time stable equilibria in fractional-order nonlinear systems. Automatica 50(2), 547–551 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 650–659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bao, H.B., Cao, J.D.: Projective synchronization of fractional-order memristor-based neural networks. Neural Netw 63, 1–9 (2015)

    Article  MATH  Google Scholar 

  23. Pan, Y., Yu, H.: Composite learning from adaptive dynamic surface control. IEEE Trans. Automat. Control 61(9), 2603–2609 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gao, Z.: Robust stabilization criterion of fractional-order controllers for interval fractional-order plants. Automatica 61, 9–17 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag-leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Boroujeni, E.A., Momeni, H.R.: Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems. Signal Process. 92(10), 2365–2370 (2012)

    Article  Google Scholar 

  27. Yang, Y., Chen, G.: Finite-time stability of fractional order impulsive switched systems. Int. J. Robust Nonlinear Control 25(13), 2207–2222 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen, Y., Vinagre, B.M., Podlubny, I.: Continued fraction expansion approaches to discretizing fractional order derivatives–an expository review. Nonlinear Dyn. 38(1–4), 155–170 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. M. n. Efe, : Fractional order systems in industrial automation–a survey. IEEE Trans. Ind. Inf. 7(4), 582–591 (2011)

  30. Aounallah, T., Essounbouli, N., Hamzaoui, A., Bouchafaa, F.: Algorithm on fuzzy adaptive backstepping control of fractional order for doubly-fed induction generators. Iet Renew. Power Gen. 12(8), 962–967 (2018)

    Article  Google Scholar 

  31. Chen, M., Jiang, C., Wu, Q.: Backstepping control for a class of uncertain nonlinear systems with neural network. Int. J. Nonlinear Sci. 3(2), 137–143 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Shao, S., Chen, M., Chen, S., Wu, Q.: Adaptive neural control for an uncertain fractional-order rotational mechanical system using disturbance observer. IET Control Theory Appl. 10(16), 1972–1980 (2016)

    Article  MathSciNet  Google Scholar 

  33. Mirzajani, S., Aghababa, M.P., Heydari, A.: Adaptive t-s fuzzy control design for fractional-order systems with parametric uncertainty and input constraint. Fuzzy Sets Syst. (2018)

  34. Liu, H., Li, S., Wang, H., Sun, Y.: Adaptive fuzzy control for a class of unknown fractional-order neural networks subject to input nonlinearities and dead-zones. Inf. Sci. 454–455, 30–45 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Song, S., Park, J.H., Zhang, B., Song, X., Zhang, Z.: Adaptive command filtered neuro-fuzzy control design for fractional-order nonlinear systems with unknown control directions and input quantization. IEEE Trans. Syst. Man Cybern. 1, 1—12,(2020)

    Google Scholar 

  36. Dadras, S., Momeni, H.R.: Control of a fractional-order economical system via sliding mode. Physica A 389(12), 2434–2442 (2010)

    Article  Google Scholar 

  37. Yin, C., Chen, Y.Q., Zhong, S.M.: Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica 50(12), 3173–3181 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Delghavi, M.B., Shoja-Majidabad, S., Yazdani, A.: Fractional-order sliding-mode control of islanded distributed energy resource systems. IEEE Trans. Sustain. Energy 7(4), 1482–1491 (2016)

    Article  Google Scholar 

  39. Xiong, P.-Y., Jahanshahi, H., Alcaraz, R., Chu, Y.-M., Gómez-Aguilar, J., Alsaadi, F.E.: Spectral entropy analysis and synchronization of a multi-stable fractional-order chaotic system using a novel neural network-based chattering-free sliding mode technique. Chaos Solitons Fractals 144, 110576 (2021)

    Article  MathSciNet  Google Scholar 

  40. Cuong, H.M., Dong, H.Q., Trieu, P.V., Tuan, L.A.: Adaptive fractional-order terminal sliding mode control of rubber-tired gantry cranes with uncertainties and unknown disturbances. Mech. Syst. Signal Process. 154, 107601 (2021). https://doi.org/10.1016/j.ymssp.2020.107601

    Article  Google Scholar 

  41. Ladaci, S., Charef, A.: On fractional adaptive control. Nonlinear Dyn. 43(4), 365–378 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shi, B., Yuan, J., Dong, C.: On fractional model reference adaptive control. Sci. World J. 2014, 1–8 (2014). https://doi.org/10.1155/2014/521625

    Article  Google Scholar 

  43. Wei, Y., Peter, W.T., Yao, Z., Wang, Y.: Adaptive backstepping output feedback control for a class of nonlinear fractional order systems. Nonlinear Dyn. 86(2), 1047–1056 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sheng, D., Wei, Y., Cheng, S., Shuai, J.: Adaptive backstepping control for fractional order systems with input saturation. J. Franklin Inst. 354(5), 2245–2268 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wei, M., Li, Y.-X., Tong, S.: Event-triggered adaptive neural control of fractional-order nonlinear systems with full-state constraints. Neurocomputing 412, 320–326 (2020). https://doi.org/10.1016/j.neucom.2020.06.082

    Article  Google Scholar 

  46. Lu, S., Wang, X.: Barrier Lyapunov function-based adaptive neural network control for incommensurate fractional-order chaotic permanent magnet synchronous motors with full-state constraints via command filtering. J. Vibrat. Control. (2020). https://doi.org/10.1177/1077546320962639

    Article  Google Scholar 

  47. Wang, L.X.: Adaptive Fuzzy Systems and Control? Design and Stability Analysis. Englewood Cliffs, Prentice-Hall (1994)

    Google Scholar 

  48. Wang, L.X.: Stable adaptive fuzzy control of nonlinear systems. IEEE Trans. Fuzzy Syst. 1(2), 146–155 (1993)

    Article  Google Scholar 

  49. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Berlin (2008)

    MATH  Google Scholar 

  50. Gong, P.: Distributed tracking of heterogeneous nonlinear fractional-order multi-agent systems with an unknown leader. J. Franklin Inst. Eng. Appl. Math. 354(5), 2226–2244 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2951–2957 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Chen, W., Dai, H., Song, Y., Zhang, Z.: Convex Lyapunov functions for stability analysis of fractional order systems. IET Control Theory Appl. 11(7), 1070–1074 (2017)

    Article  MathSciNet  Google Scholar 

  53. Ren, B., Ge, S.S., Tee, K.P., Lee, T.H.: Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function. IEEE Trans. Neural Netw. 21(8), 1339–1345 (2010)

    Article  Google Scholar 

  54. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zouari, F., Ibeas, A., Boulkroune, A., Cao, J., Arefi, M.M.: Adaptive neural output-feedback control for nonstrict-feedback time-delay fractional-order systems with output constraints and actuator nonlinearities. Neural Netw. 105, 256–276 (2018)

    Article  MATH  Google Scholar 

  56. Xu, B., Chen, D., Zhang, H., Wang, F.: Modeling and stability analysis of a fractional-order francis hydro-turbine governing system. Chaos Solitons Fractals 75, 50–61 (2015). https://doi.org/10.1016/j.chaos.2015.01.025

    Article  MathSciNet  MATH  Google Scholar 

  57. Shahvali, M., Azarbahram, A., Naghibi-Sistani, M.-B., Askari, J.: Bipartite consensus control for fractional-order nonlinear multi-agent systems: an output constraint approach. Neurocomputing 397, 212–223 (2020). https://doi.org/10.1016/j.neucom.2020.02.036

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported in part by the Doctoral Program of Shandong Provincial Natural Science Foundation of China (ZR2019BF048), Shandong Provincial Natural Science Foundation of China (ZR2019MEE093), and Yantai Science and Technology Innovation Development Project (2020XDRH094,2021XDHZ077).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changhui Wang or Shuai Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, M., Chang, Y., Zhang, F. et al. Observer-Based Adaptive Fuzzy Output Feedback Control for a Class of Fractional-Order Nonlinear Systems with Full-State Constraints. Int. J. Fuzzy Syst. 24, 1046–1058 (2022). https://doi.org/10.1007/s40815-021-01189-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01189-5

Keywords

Navigation