Skip to main content
Log in

Dynamic Event-Based Asynchronous and Resilient Dissipative Filtering for T–S Fuzzy Markov Jump Singularly Perturbed Systems Against Deception Attacks

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In the paper, we endeavor to study the asynchronous and resilient dissipative filtering issue for T–S fuzzy Markov jump singularly perturbed systems (MJSPSs) involving the dynamic event-triggered transmission protocol, partly known conditional probabilities, and deception attacks. A novel dynamic event-triggered transmission protocol is firstly offered to further decrease the data transmission percentage over the communication channels. To better depict the practical communication situations, the mutually independent random variables that subject to the Bernoulli distribution are adopted to formulate the occurrence of deception attacks. And an asynchronous and resilient filter is properly constructed, which yields that the filtering error systems are converted into the T–S fuzzy MJSPSs with time-varying delays. Then, the criteria of stochastically stable for the filtering error systems are presented concerning a group of linear matrix inequalities (LMIs). By solving the LMIs, the nonsynchronous and resilient dissipative filter, the weighting matrix of dynamic event-triggered transmission protocol can be concurrently determined. Eventually, an example is provided to verify the validity of the developed theoretical results. Further, for the prescribed dissipative performance, state trajectoires, filter trajectories, and filter errors are presented for MJSPSs involving deception attacks under different transmission protocols, which illustrate that both of them almost have the same decay rates. However, for the prescribed dissipative performance, the transmission rates are so different for two transmission protocols that the dynamic event-triggered transmission protocol is much lower than that of the static one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kokotovic, P.V., Khalil, H.K.: Singular Perturbations in Systems and Control. IEEE Press, Piscataway (1986)

    Google Scholar 

  2. Xu, S.Y., Feng, G.: New results on \(H_{\infty }\) control of discrete singularly perturbed systems. Automatica 45(10), 2339–2343 (2009)

    Article  MathSciNet  Google Scholar 

  3. Shen, H., Li, F., Xu, S.Y., Sreeram, V.: Slow state variables feedback stabilization for semi-Markov jump systems with singular perturbations. IEEE Trans. Autom. Control. 63(8), 2709–2714 (2018)

    Article  MathSciNet  Google Scholar 

  4. Shen, H., Men, Y., Wu, Z.G., Park, J.H.: Nonfragile \(H_{\infty }\) control for fuzzy Markovian jump systems under fast sampling singular perturbation. IEEE Trans. Cybernet. 48(12), 2058–2069 (2018)

    Google Scholar 

  5. Wang, Y., Ahn, C.K., Yan, H., Xie, S.: Fuzzy control and filtering for nonlinear singularly perturbed Markov jump systems. IEEE Trans. Cybernet. 51(1), 297–308 (2020)

    Article  Google Scholar 

  6. Wang, J., Huang, Z., Wu, Z., Cao, J., Shen, H.: Extended dissipative control for singularly perturbed PDT switched systems and its application. IEEE Trans. Circuits Syst. Regul. Pap. 67(12), 5281–5289 (2020)

    Article  MathSciNet  Google Scholar 

  7. Wang, Y.Q., Chen, F., Zhuang, G.M., Song, G.F.: Event-based asynchronous and resilient filtering for Markov jump singularly perturbed systems against deception attacks. ISA Trans. 112, 56–73 (2021)

    Article  Google Scholar 

  8. Liu, X., Xia, J., Wang, J., Shen, H.: Interval type-2 fuzzy passive filtering for nonlinear singularly perturbed PDT-switched systems and its application. J. Syst. Sci. Complex. 14, 1–24 (2020)

    MATH  Google Scholar 

  9. Shen, H., Yang, C., Xia, J., Park, J. H.: Non-fragile fuzzy control for nonlinear fast sampling singularly perturbed systems subject to Markov jumping parameters. IEEE Trans. Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2020.2990108

  10. Wang, J., Xia, J., Shen, H., Xing, M., Park, J. H.: \(H_{\infty }\) synchronization for fuzzy Markov jump chaotic systems with piecewise-constant transition probabilities subject to PDT switching rule. IEEE Trans. Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2020.3012761.

  11. Ma, Q., Xu, S.Y.: Consensus switching of second-order multiagent systems with time delay. IEEE Trans Cybernet. (2020). https://doi.org/10.1109/TCYB.2020.3011448

  12. Zhuang, G.M., Xia, J.W., Feng, J.E., Zhang, B.Y., Lu, J.W., Wang, Z.: Admissibility analysis and stabilization for neutral descriptor hybrid systems with time-varying delays. Nonlinear Anal. Hybrid Syst. 33, 311–321 (2019)

    Article  MathSciNet  Google Scholar 

  13. Shen, H., Men, Y.Z., Wu, Z.G., Cao, J.D., Lu, G.P.: Network-based quantized control for fuzzy singularly perturbed semi-Markov jump systems and its application. IEEE Trans. Circuits Syst. Regul. Pap. 66(3), 1130–1140 (2019)

    Article  Google Scholar 

  14. Zhuang, G.M., Xu, S.Y., Xia, J.W., Ma, Q., Zhang, Z.Q.: Non-fragile delay feedback control for neutral stochastic Markovian jump systems with time-varying delays. Appl. Math. Comput. 355, 21–32 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Shen, H., Li, F., Wu, Z.G., Park, J.H., Victor, S.: Fuzzy-model-based non-fragile control for nonlinear singularly perturbed systems with semi-Markov jump parameters. IEEE Trans. Fuzzy Syst. 26(6), 3428–3439 (2018)

    Article  Google Scholar 

  16. Wang, J., Liang, K., Huang, X., Wang, Z., Shen, H.: Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback. Appl. Math. Comput. 328, 247–262 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Wang, Y.Q., Chen, F., Zhuang, G.M., Yang, G.: Dynamic event-based mixed \(H_{\infty }\) and dissipative asynchronous control for Markov jump singularly perturbed systems. Appl. Math. Comput. 386, 125443 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Li, H., Wang, Y., Yao, D., Lu, R.Q.: A sliding mode approach to stabilization of nonlinear Markovian jump singularly perturbed systems. Automatica 97, 404–413 (2018)

    Article  MathSciNet  Google Scholar 

  19. Yue, D., Tian, E.G., Han, Q.L.: A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans. Autom. Control. 58(2), 475–481 (2013)

    Article  MathSciNet  Google Scholar 

  20. Aminian, B., Araújo, J., Johansson, M., Johansson, K. H.: A virtual testbed for wireless cyber-physical systems. In: 39th Annual conference of the IEEE industrial electronics society 2013, pp 5588–5593

  21. Girard, A.: Dynamic triggering mechanisms for event-triggered control. IEEE Trans. Autom. Control. 60(7), 1992–1997 (2015)

    Article  MathSciNet  Google Scholar 

  22. Luo, S., Deng, F.Q., Chen, W.H.: Dynamic event-triggered control for linear stochastic systems with sporadic measurements and communication delays. Automatica 107, 86–94 (2019)

    Article  MathSciNet  Google Scholar 

  23. Li, F.Z., Liu, Y.G.: Adaptive event-triggered output-feedback controller for uncertain nonlinear systems. Automatica 117, 109006 (2020)

    Article  MathSciNet  Google Scholar 

  24. Xie, Y., Ma, Q.: Adaptive event-triggered neural network control for switching nonlinear systems with time delays, IEEE Trans Neur Net Lear, https://doi.org/10.1109/TNNLS.2021.3100533.

  25. Wang, Y.Q., Chen, F., Zhuang, G.M.: Dynamic event-based reliable dissipative asynchronous control for stochastic Markov jump systems with general transition probabilities. Nonlinear Dyn. 101, 465–485 (2020)

    Article  Google Scholar 

  26. Liu, Y., Xia, J., Meng, B., Song, X., Shen, H.: Extended dissipative synchronization for semi-Markov jump complex dynamic networks via memory sampled-data control scheme. J. Franklin Inst. 357(15), 10900–10920 (2020)

    Article  MathSciNet  Google Scholar 

  27. Wang, Y.Q., Song, G.F., Zhao, J.J., Sun, J., Zhuang, G.M.: Reliable mixed \(H_{\infty }\) and passive control for networked control systems under adaptive event-triggered scheme with actuator faults and randomly occurring nonlinear perturbations. ISA Trans. 89, 45–57 (2019)

    Article  Google Scholar 

  28. Wang, Y.Q., Zhuang, G.M., Chen, F.: A dynamic event-triggered \(H_{\infty }\) control for singular Markov jump systems with redundant channels. Int. J. Syst. Sci. 51(1), 158–179 (2020)

    Article  MathSciNet  Google Scholar 

  29. Liu, D., Yang, G.H.: Dynamic event-triggered control for linear time-invariant systems with gain performance. Int. J. Robust Nonlinear Control. 29(2), 507–518 (2019)

    Article  MathSciNet  Google Scholar 

  30. Wang, Y.Q., Zhuang, G.M., Chen, F.: Event-based asynchronous dissipative filtering for T–S fuzzy singular Markovian jump systems with redundant channels. Nonlinear Anal. Hybrid Syst. 34, 264–283 (2019)

    Article  MathSciNet  Google Scholar 

  31. Wang, Y., Hu, X., Shi, K., Song, X., Shen, H.: Network-based passive estimation for switched complex dynamical networks under persistent dwell-time with limited signals. J. Franklin Inst. 357(15), 10921–10936 (2020)

    Article  MathSciNet  Google Scholar 

  32. Wang, H.T., Wang, Y.Q., Zhuang, G.M., Lu, J.W.: Asynchronous passive dynamic event-triggered controller design for singular Markov jump systems with general transition rates under stochastic cyber-attacks. IET Control Theory Appl. 14(16), 2291–2302 (2020)

    Article  Google Scholar 

  33. Wang, Y.Q., Zhuang, G.M., Chen, X., Wang, Z., Chen, F.: Dynamic event-based finite-time mixed \(H_{\infty }\) and passive asynchronous filtering for T-S fuzzy singular Markov jump systems with general transition rates. Nonlinear Anal. Hybrid Syst. 36, 100874 (2020)

    Article  MathSciNet  Google Scholar 

  34. Lee, E.A.: Cyber physical systems: design challenges. In: 11th IEEE International symposium on object and component-oriented real-time distributed computing (ISORC). IEEE. 2008, pp 363–369 (2008)

  35. Ren, X.X., Yang, G.H.: Adaptive control for nonlinear cyber-physical systems under false data injection attacks through sensor networks. Int. J. Robust Nonlinear Control 30(1), 65–79 (2020)

    Article  MathSciNet  Google Scholar 

  36. Murguia, C., Shames, I., Ruths, J., Nešić, D.: Security metrics and synthesis of secure control systems. Automatica 115, 108757 (2020). https://doi.org/10.1016/j.automatica.2019.108757

    Article  MathSciNet  MATH  Google Scholar 

  37. Ding, D., Wei, G., Zhang, S., Liu, Y., Alsaadi, F.E.: On scheduling of deception attacks for discrete-time networked systems equipped with attack detectors. Neurocomputing 219, 99–106 (2017)

    Article  Google Scholar 

  38. Wang, R.H., Hou, L.L., Zong, G.D., Fei, S.M., Yang, D.: Stability and stabilization of continuous-time switched systems: a multiple discontinuous convex Lyapunov function approach. Int. J. Robust Nonlinear Control 29(5), 1499–1514 (2019)

    Article  MathSciNet  Google Scholar 

  39. Ma, Q., Xu, S.Y.: Exact delay bounds of second-order multi-agent systems with input and communication delays: from algebra and geometric prospective. IEEE transactions on circuits and systems II: express briefs (2020). https://doi.org/10.1109/TCSII.2021.3094185

  40. Zhang, Q., Liu, K., Xia, Y., Ma, A.: Optimal stealthy deception attack against cyber-physical systems. IEEE Trans Cybernet. (2019). https://doi.org/10.1109/TCYB.2019.2912622

  41. Tian, E.G., Peng, C.: Memory-based event-triggering \(H_\infty \) load frequency control for power systems under deception attacks. IEEE Trans Cybernet. (2020). https://doi.org/10.1109/TCYB.2020.2972384

  42. Li, Y.G., Yang, G.H.: Optimal deception attacks against remote state estimation in cyber-physical systems. J. Franklin Inst. 357(3), 1832–1852 (2020)

    Article  MathSciNet  Google Scholar 

  43. Peng, C., Li, J.C., Fei, M.R.: Resilient event-triggering \(H_{\infty }\) load frequency control for multi-area power systems with energy-limited DoS attacks. IEEE Trans. Power Syst. 32(5), 4110–4118 (2017)

    Article  Google Scholar 

  44. Hu, S.L., Yue, D., Xie, X., Chen, X., Yin, X.: Resilient event-triggered controller synthesis of networked control systems under periodic DoS jamming attacks. IEEE Trans Cybernet. 49(12), 4271–4281 (2018)

    Article  Google Scholar 

  45. Wang, J.H., Zhou, Y.G., Yang, Y.X.: 3-D measurement method for nonuniform reflective objects. IEEE Trans. Instrum. Meas. 69(11), 9132–9143 (2020)

    Article  Google Scholar 

  46. Hu, S.L., Yue, D., Chen, X., Cheng, Z., Xie, X.: Resilient \(H_{\infty }\) filtering for event-triggered networked systems under nonperiodic DoS jamming attacks. IEEE Trans. Syst. Man Cybernet. (2019). https://doi.org/10.1109/TSMC.2019.2896249

  47. Yan, Y., Yang, C., Ma, X., Zhou, L.: Sampled-data \(H_{\infty }\) filtering for Markovian jump singularly perturbed systems with time-varying delay and missing measurements. Int. J. Syst. Sci. 49(3), 464–478 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The paper was partly supported by the National Natural Science Foundation of China under Grant 61773191, 61803241, 61973170, and 61973168; Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions under Grant 2019KJI010; Talent Introduction and Cultivation Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions; the Fundamental Research Funds for the Central Universities (No. 2020ACOCP02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wang, Y., Zhuang, G. et al. Dynamic Event-Based Asynchronous and Resilient Dissipative Filtering for T–S Fuzzy Markov Jump Singularly Perturbed Systems Against Deception Attacks. Int. J. Fuzzy Syst. 24, 1491–1514 (2022). https://doi.org/10.1007/s40815-021-01204-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01204-9

Keywords

Navigation