Skip to main content

Advertisement

Log in

A New Fuzzy TOPSIS-Based Machine Learning Framework for Minimizing Completion Time in Supply Chains

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This research focuses on the role of internal factors in small and medium-scale supply chains in developing countries, enhancing the product completion time in fuzzy conditions. In this research, a 3-phase fuzzy-based framework is proposed to address the product completion time problem. In the first phase, using quantitative research, human resource, machinery, material, technology, and social environment are identified as the group factors that can have the most impact on product completion time. Then, in the next phase, a supervised machine-learning algorithm is proposed to classify the production alternatives according to their actual status of the effective internal factor. Then, in the third phase, a new fuzzy-based heuristic is developed to generate production alternatives and evaluate and select the best one. The outcomes show that the layout (0.636), material (0.602), maintenance (0.584), human resource (0.56), and technology (0.553) affect the product completion time, respectively. The findings also indicated that the proposed Fuzzy-TOPSIS heuristic is capable of reducing the product completion time in a range between 0 and 10.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. https://www.statista.com/statistics/318732/share-of-economic-sectors-in-the-gdp-in-malaysia/. Retrieved in 01/08/2020.

  2. https://www.ceicdata.com/en/malaysia/number-of-bankruptcies/number-of-bankruptcies. Retrieved in 01/08/2020.

  3. https://tradingeconomics.com/malaysia/new-businesses-registered-number-wb-data.html#:~:text=New%20businesses%20registered%20(number)%20in,compiled%20from%20officially%20recognized%20sources. Retrieved in 01/08/2020.

References

  1. Senthil Kumar, P.: A simple method for solving type-2 and type-4 fuzzy transportation problems. Int. J. Fuzzy Logic Intell. Syst. 16(4), 225–237 (2016)

    Article  Google Scholar 

  2. Kumar, P.S., Hussain, R.J.: A method for finding an optimal solution of an assignment problem under mixed intuitionistic fuzzy environment. In: Proceedings in International Conference on Mathematical Sciences (ICMS-2014) (2014).

  3. Xu, R., et al.: Two kinds of ant colony algorithms to minimize the total completion time for batch scheduling problem. Comput. Integr. Manuf. Syst. 16(6), 1255–1264 (2010)

    Google Scholar 

  4. Irdem, D.F., Kacar, N.B., Uzsoy, R.: An exploratory analysis of two iterative linear programming—simulation approaches for production planning. IEEE Trans. Semicond. Manuf. 23(3), 442–455 (2010)

    Article  Google Scholar 

  5. Ramezanian, R., Rahmani, D., Barzinpour, F.: An aggregate production planning model for two phase production systems: Solving with genetic algorithm and tabu search. Expert Syst. Appl. 39(1), 1256–1263 (2012)

    Article  Google Scholar 

  6. Shah, N.K., Ierapetritou, M.G.: Integrated production planning and scheduling optimization of multi-site, multi-product process industry. Comput. Chem. Eng. 37, 214–226 (2012)

    Article  Google Scholar 

  7. Ning, Y., Liu, J., Yan, L.: Uncertain aggregate production planning. Soft. Comput. 17(4), 617–624 (2013)

    Article  Google Scholar 

  8. Wang, S.-C., Yeh, M.-F.: A modified particle swarm optimization for aggregate production planning. Expert Syst. Appl. 41(6), 3069–3077 (2014)

    Article  Google Scholar 

  9. Díaz-Madroñero, M., Mula, J., Peidro, D.: A review of discrete-time optimization models for tactical production planning. Int. J. Prod. Res. 52(17), 5171–5205 (2014)

    Article  MATH  Google Scholar 

  10. Gansterer, M., Almeder, C., Hartl, R.F.: Simulation-based optimization methods for setting production planning parameters. Int. J. Prod. Econ. 151, 206–213 (2014)

    Article  Google Scholar 

  11. Rossi, T., et al.: Improving production planning through finite-capacity MRP. Int. J. Prod. Res. 55(2), 377–391 (2017)

    Article  Google Scholar 

  12. Wang, J., et al.: Big data driven cycle time parallel prediction for production planning in wafer manufacturing. Enterp. Inf. Syst. 12(6), 714–732 (2018)

    Article  Google Scholar 

  13. Rauch, E., Dallasega, P., Matt, D.T.: Complexity reduction in engineer-to-order industry through real-time capable production planning and control. Prod. Eng. Res. Devel. 12(3–4), 341–352 (2018)

    Article  Google Scholar 

  14. Rubaiee, S., Yildirim, M.B.: An energy-aware multi-objective ant colony algorithm to minimize total completion time and energy cost on a single-machine preemptive scheduling. Comput. Ind. Eng. 127, 240–252 (2019)

    Article  Google Scholar 

  15. Huang, J., Chang, Q., Arinez, J.: Product completion time prediction using a hybrid approach combining deep learning and system model. J. Manuf. Syst. 57, 311–322 (2020)

    Article  Google Scholar 

  16. Hammadi, L., et al.: Integrated model based on extended fuzzy AHP and criticality analysis for risk assessment in customs supply chain: a perspective from morocco. Int. J. Ind. Eng. 27(2), 181–208 (2020)

    MathSciNet  Google Scholar 

  17. Erol, R., et al.: A multi-agent based approach to dynamic scheduling of machines and automated guided vehicles in manufacturing systems. Appl. Soft Comput. 12(6), 1720–1732 (2012)

    Article  Google Scholar 

  18. Gen, M., Lin, L.: Multi-objective evolutionary algorithm for manufacturing scheduling problems: state-of-the-art survey. J. Intell. Manuf. 25(5), 849–866 (2014)

    Article  MathSciNet  Google Scholar 

  19. Kapanoglu, M., et al.: A pattern-based genetic algorithm for multi-robot coverage path planning minimizing completion time. J. Intell. Manuf. 23(4), 1035–1045 (2012)

    Article  Google Scholar 

  20. Li, K., Leung, J.-T., Cheng, B.-Y.: An agent-based intelligent algorithm for uniform machine scheduling to minimize total completion time. Appl. Soft Comput. 25, 277–284 (2014)

    Article  Google Scholar 

  21. Angius, A., Horváth, A., Colledani, M.: Moments of accumulated reward and completion time in Markovian models with application to unreliable manufacturing systems. Perform. Eval. 75, 69–88 (2014)

    Article  Google Scholar 

  22. Mokhtari, H., Salmasnia, A.: An evolutionary clustering-based optimization to minimize total weighted completion time variance in a multiple machine manufacturing system. Int. J. Inf. Technol. Decis. Mak. 14(05), 971–991 (2015)

    Article  Google Scholar 

  23. Li, Z., Tang, Q., Zhang, L.: Minimizing energy consumption and cycle time in two-sided robotic assembly line systems using restarted simulated annealing algorithm. J. Clean. Prod. 135, 508–522 (2016)

    Article  Google Scholar 

  24. Costa, A., Cappadonna, F.A., Fichera, S.: Minimizing the total completion time on a parallel machine system with tool changes. Comput. Ind. Eng. 91, 290–301 (2016)

    Article  Google Scholar 

  25. Chen, X.-J., et al.: An automatic optimization method for minimizing supporting structures in additive manufacturing. Adv. Manuf. 8(1), 49–58 (2020)

    Article  Google Scholar 

  26. Delgoshaei, A., Ali, A.: Review evolution of cellular manufacturing system’s approaches: human resource planning method. J. Proj. Manag. 4(1), 31–42 (2019)

    Google Scholar 

  27. Süer, G.A., et al.: Minimizing total tardiness subject to manpower restriction in labor-intensive manufacturing cells. Math. Comput. Model. 57(3–4), 741–753 (2013)

    Article  Google Scholar 

  28. Delgoshaei, A., Ali, A.: An applicable method for scheduling temporary and skilled-workers in dynamic cellular manufacturing systems using hybrid ant colony optimization and tabu search algorithms. J. Ind. Prod. Eng. 34(6), 425–449 (2017)

    Google Scholar 

  29. Satoglu, S.I., Suresh, N.C.: A goal-programming approach for design of hybrid cellular manufacturing systems in dual resource constrained environments. Comput. Ind. Eng. 56(2), 560–575 (2009)

    Article  Google Scholar 

  30. Delgoshaei, A., Ariffin, M.K.A., Ali, A.: A multi-period scheduling method for trading-off between skilled-workers allocation and outsource service usage in dynamic CMS. Int. J. Prod. Res. 55(4), 997–1039 (2017)

    Article  Google Scholar 

  31. Ounnar, F., Pujo, P.: Pull control for job shop: holonic manufacturing system approach using multi-criteria decision-making. J. Intell. Manuf. 23(1), 141–153 (2012)

    Article  Google Scholar 

  32. Cesaní, V.I., Steudel, H.J.: A study of labor assignment flexibility in cellular manufacturing systems. Comput. Ind. Eng. 48(3), 571–591 (2005)

    Article  Google Scholar 

  33. Li, Q., et al.: Multi-objective optimal cross-training configuration models for an assembly cell using non-dominated sorting genetic algorithm-II. Int. J. Comput. Integr. Manuf. 25(11), 981–995 (2012)

    Article  Google Scholar 

  34. Liu, Y., et al.: Workload-based multi-task scheduling in cloud manufacturing. Robot. Comput. Integr. Manuf. 45, 3–20 (2017)

    Article  Google Scholar 

  35. Kumar, P.S.: PSK method for solving intuitionistic fuzzy solid transportation problems. Int. J. Fuzzy Syst. Appl. (IJFSA) 7(4), 62–99 (2018)

    Google Scholar 

  36. Castellano, J.M., et al.: Study on the effects of raw materials composition and pelletization conditions on the quality and properties of pellets obtained from different woody and non woody biomasses. Fuel 139, 629–636 (2015)

    Article  Google Scholar 

  37. Chen, Z., et al.: Effect of raw materials on the production process of the silicon furnace. J. Clean. Prod. 158, 359–366 (2017)

    Article  Google Scholar 

  38. Delgoshaei, A., Naserbakht, F.: A sustainable method for scheduling maintenance services of an airline with the aims of minimising awaiting times and maximising flights performance. Int. J. Sustain. Aviat. 5(2), 119–157 (2019)

    Article  Google Scholar 

  39. Seiti, H., Hafezalkotob, A.: Developing the R-TOPSIS methodology for risk-based preventive maintenance planning: a case study in rolling mill company. Comput. Ind. Eng. 128, 622–636 (2019)

    Article  Google Scholar 

  40. Delgoshaei, A., Ali, A.: Evolution of clustering techniques in designing cellular manufacturing systems: a state-of-art review. Int. J. Ind. Eng. Comput. 10(2), 177–198 (2019)

    Google Scholar 

  41. Kumar, P.S., Hussain, R.J.: Computationally simple approach for solving fully intuitionistic fuzzy real life transportation problems. Int. J. Syst. Assur. Eng. Manag. 7(1), 90–101 (2016)

    Article  Google Scholar 

  42. Kumar, P.S.: PSK method for solving type-1 and type-3 fuzzy transportation problems. Int. J. Fuzzy Syst. Appl. (IJFSA) 5(4), 121–146 (2016)

    Google Scholar 

  43. Delgoshaei, A., Gomes, C.: A multi-layer perceptron for scheduling cellular manufacturing systems in the presence of unreliable machines and uncertain cost. Appl. Soft Comput. 49, 27–55 (2016)

    Article  Google Scholar 

  44. Delgoshaei, A., et al.: Review of evolution of cellular manufacturing system’s approaches: material transferring models. Int. J. Precis. Eng. Manuf. 17(1), 131–149 (2016)

    Article  Google Scholar 

  45. Zhong, R.Y., et al.: RFID-enabled real-time manufacturing execution system for mass-customization production. Robot. Comput. Integr. Manuf. 29(2), 283–292 (2013)

    Article  Google Scholar 

  46. Kumar, P.S.: Developing a new approach to solve solid assignment problems under intuitionistic fuzzy environment. Int. J. Fuzzy Syst. Appl. (IJFSA) 9(1), 1–34 (2020)

    Google Scholar 

  47. Mohideen, S.I., Kumar, P.S.: A comparative study on transportation problem in fuzzy environment. Int. J. Math. Res. 2(1), 151–158 (2010)

    Google Scholar 

  48. Du, J., et al.: DEA-based production planning. Omega 38(1–2), 105–112 (2010)

    Article  Google Scholar 

  49. Albey, E., et al.: Demand modeling with forecast evolution: an application to production planning. IEEE Trans. Semicond. Manuf. 28(3), 374–384 (2015)

    Article  Google Scholar 

  50. Kumar, P.S.: Intuitionistic fuzzy solid assignment problems: a software-based approach. Int. J. Syst. Assur. Eng. Manag. 10(4), 661–675 (2019)

    Article  Google Scholar 

  51. Izakian, H., Abraham, A.: Fuzzy C-means and fuzzy swarm for fuzzy clustering problem. Expert Syst. Appl. 38(3), 1835–1838 (2011)

    Article  Google Scholar 

  52. Kumar, P.S.: A note on’a new approach for solving intuitionistic fuzzy transportation problem of type-2’. Int. J. Logist. Syst. Manag. 29(1), 102–129 (2018)

    Google Scholar 

  53. Tyagi, M., Kumar, P., Kumar, D.: A hybrid approach using AHP-TOPSIS for analyzing e-SCM performance. Procedia Eng. 97, 2195–2203 (2014)

    Article  Google Scholar 

  54. Nilsson, H., Nordström, E.-M., Öhman, K.: Decision support for participatory forest planning using AHP and TOPSIS. Forests 7(5), 100 (2016)

    Article  Google Scholar 

  55. Felfel, H., Ayadi, O., Masmoudi, F.: Pareto optimal solution selection for a multi-site supply chain planning problem using the VIKOR and TOPSIS methods. Int. J. Service Sci. Manag. Eng. Technol. (IJSSMET). 8(3), 21–39 (2017).

  56. Kaya, T., Kahraman, C.: Multicriteria decision making in energy planning using a modified fuzzy TOPSIS methodology. Expert Syst. Appl. 38(6), 6577–6585 (2011)

    Article  Google Scholar 

  57. Bas, E.: The integrated framework for analysis of electricity supply chain using an integrated SWOT-fuzzy TOPSIS methodology combined with AHP: the case of Turkey. Int. J. Electr. Power Energy Syst. 44(1), 897–907 (2013)

    Article  MathSciNet  Google Scholar 

  58. Kia, S., Danaei, A., Oroei, M.: An application of fuzzy TOPSIS on ranking products: a case study of faucet devices. Decis. Sci. Lett. 3(1), 43–48 (2014)

    Article  Google Scholar 

  59. Solangi, Y.A., et al.: Evaluating the strategies for sustainable energy planning in Pakistan: an integrated SWOT-AHP and Fuzzy-TOPSIS approach. J. Clean. Prod. 236, 117655 (2019)

    Article  Google Scholar 

  60. Seyedmohammadi, J., et al.: Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Geoderma 310, 178–190 (2018)

    Article  Google Scholar 

  61. Ezhilarasan, N., Vijayalakshmi, C.: Optimization of fuzzy programming with TOPSIS Algorithm. Procedia Comput. Sci. 172, 473–479 (2020)

    Article  Google Scholar 

  62. Kumar, P.S.: Intuitionistic fuzzy zero point method for solving type-2 intuitionistic fuzzy transportation problem. Int. J. Oper. Res. 37(3), 418–451 (2020)

    Article  MathSciNet  Google Scholar 

  63. Kumar, P.S.: Algorithms for solving the optimization problems using fuzzy and intuitionistic fuzzy set. Int. J. Syst. Assur. Eng. Manag. 11(1), 189–222 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thanks anonymous reviewers and editors for their positive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Khairol Anuar Bin Mohd Ariffin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alazemi, F.K.A.O.H., Ariffin, M.K.A.B.M., Mustapha, F.B. et al. A New Fuzzy TOPSIS-Based Machine Learning Framework for Minimizing Completion Time in Supply Chains. Int. J. Fuzzy Syst. 24, 1669–1695 (2022). https://doi.org/10.1007/s40815-021-01226-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01226-3

Keywords

Navigation