Skip to main content
Log in

Semantic enhanced Markov model for sequential E-commerce product recommendation

  • Regular Paper
  • Published:
International Journal of Data Science and Analytics Aims and scope Submit manuscript

Abstract

To model sequential relationships between items, Markov Models build a transition probability matrix \(\mathbf {P}\) of size \(n \times n\), where n represents number of states (items) and each matrix entry \(p_{(i,j)}\) represents transition probabilities from state i to state j. Existing systems such as factorized personalized Markov chains (FPMC) and fossil either combine sequential information with user preference information or add the high-order Markov chains concept. However, they suffer from (i) model complexity: an increase in Markov Model’s order (number of states) and separation of sequential pattern and user preference matrices, (ii) sparse transition probability matrix: few product purchases from thousands of available products, (iii) ambiguous prediction: multiple states (items) having same transition probability from current state and (iv) lack of semantic knowledge: transition to next state (item) depends on probabilities of items’ purchase frequency. To alleviate sparsity and ambiguous prediction problems, this paper proposes semantic-enabled Markov model recommendation (SEMMRec) system which inputs customers’ purchase history and products’ metadata (e.g., title, description and brand) and extract products’ sequential and semantic knowledge according to their (i) usage (e.g., products co-purchased or co-reviewed) and (ii) textual features by finding similarity between products based on their characteristics using distributional hypothesis methods (Doc2vec and TF-IDF) which consider the context of items’ usage. Next, this extracted knowledge is integrated into the transition probability matrix \(\mathbf {P}\) to generate personalized sequential and semantically rich next item recommendations. Experimental results on various E-commerce data sets exhibit an improved performance by the proposed model

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. https://www.amazon.com/.

  2. https://www.alibaba.com/.

  3. http://jmcauley.ucsd.edu/data/amazon/.

References

  1. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217–253. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_7

    Chapter  Google Scholar 

  2. Aggarwal, C.C.: An introduction to recommender systems. In: Aggarwal, C.C. (ed.) Recommender Systems: The Textbook, pp. 1–28. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29659-3_1

    Chapter  Google Scholar 

  3. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the Eleventh International Conference on Data Engineering, pp. 3–14 (1995). https://doi.org/10.1109/ICDE.1995.380415

  4. Asher, R.E., Simpson, J.M.Y.: The Encyclopedia of Language and Linguistics. Pergamon (1993)

  5. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential Pattern mining using a bitmap representation. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’02, pp. 429–435. Association for Computing Machinery, New York, NY, USA (2002). https://doi.org/10.1145/775047.775109

  6. Bernhard, S.D., Leung, C.K., Reimer, V.J., Westlake, J.: Clickstream Prediction Using Sequential Stream Mining Techniques with Markov Chains. In: Proceedings of the 20th International Database Engineering & Applications Symposium, IDEAS ’16, pp. 24–33. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2938503.2938535

  7. Bhatta, R., Ezeife, C.I., Butt, M.N.: Mining sequential patterns of historical purchases for E-commerce recommendation. In: Ordonez, C., Song, I.Y., Anderst-Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) Big Data Analytics and Knowledge Discovery. Lecture Notes in Computer Science, pp. 57–72. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27520-4_5

    Chapter  Google Scholar 

  8. Blum, A., Hopcroft, J., Kannan, R.: Foundations of Data Science, 1st edn. Cambridge University Press, Cambridge (2020). https://doi.org/10.1017/9781108755528

    Book  MATH  Google Scholar 

  9. Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl. Based Syst. 46, 109–132 (2013). https://doi.org/10.1016/j.knosys.2013.03.012.

    Article  Google Scholar 

  10. Brafman, R.I., Heckerman, D., Shani, G.: Recommendation as a Stochastic Sequential Decision Problem p. 10

  11. Cao, L.: Actionable knowledge discovery and delivery. Wiley Interdiscipl. Rev. Data Min. Knowl. Discov. 2(2), 149–163 (2012)

    Article  Google Scholar 

  12. Cao, L.: Combined mining: analyzing object and pattern relations for discovering and constructing complex yet actionable patterns. Wiley Interdiscipl. Rev. Data Min. Knowl. Discov. 3(2), 140–155 (2013)

    Article  Google Scholar 

  13. Cao, L., Zhang, C.: Domain-driven data mining: a practical methodology. Int. J. Data Warehous. Min. (IJDWM) 2(4), 49–65 (2006)

    Article  Google Scholar 

  14. Cao, L., Zhang, C., Zhao, Y., Yu, P.S., Williams, G.: DDDM2007: domain driven data mining. ACM SIGKDD Explor. Newslett. 9(2), 84–86 (2007). https://doi.org/10.1145/1345448.1345467

    Article  Google Scholar 

  15. Cao, L., Zhao, Y., Zhang, H., Luo, D., Zhang, C., Park, E.K.: Flexible frameworks for actionable knowledge discovery. IEEE Trans. Knowl. Data Eng. 22(9), 1299–1312 (2009)

    Google Scholar 

  16. Chen, X., Xu, H., Zhang, Y., Tang, J., Cao, Y., Qin, Z., Zha, H.: Sequential Recommendation with User Memory Networks. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. ACM, Marina Del Rey CA USA, pp. 108–116 (2018). https://doi.org/10.1145/3159652.3159668

  17. Deshpande, M., Karypis, G.: Selective Markov models for predicting web page accesses. ACM Trans. Internet Technol. 4(2), 163–184 (2004)

    Article  Google Scholar 

  18. de Gemmis, M., Lops, P., Musto, C., Narducci, F., Semeraro, G.: Semantics-aware content-based recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 119–159. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_4

    Chapter  Google Scholar 

  19. Ekstrand, M.D., Riedl, J.T., Konstan, J.A.: Collaborative Filtering Recommender Systems. Now Publishers Inc, Norwell (2011)

    Book  Google Scholar 

  20. Faridani, V., Jalali, M., Jahan, M.V.: Collaborative filtering-based recommender systems by effective trust. Int. J. Data Sci. Anal. 3(4), 297–307 (2017). https://doi.org/10.1007/s41060-017-0049-y

    Article  Google Scholar 

  21. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17(3), 37 (1996)

    Google Scholar 

  22. Fayyad, U.M., Piatetsky-Shapiro, G., Uthurusamy, R.: Summary from the kdd-03 panel: data mining: the next 10 years. ACM Sigkdd Explor. Newslett. 5(2), 191–196 (2003)

    Article  Google Scholar 

  23. Gabrilovich, E., Markovitch, S.: Wikipedia-based semantic interpretation for natural language processing. J. Artif. Intell. Res. 34, 443–498 (2009). https://doi.org/10.1613/jair.2669.

    Article  MATH  Google Scholar 

  24. Grbovic, M., Radosavljevic, V., Djuric, N., Bhamidipati, N., Savla, J., Bhagwan, V., Sharp, D.: E-commerce in Your Inbox: Product Recommendations at Scale. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’15, pp. 1809–1818. Association for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2783258.2788627

  25. Guo, W., Wang, S., Lu, W., Wu, H., Zhang, Q., Shao, Z.: Sequential dependency enhanced graph neural networks for session-based recommendations. In: 2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–10. IEEE (2021)

  26. Harris, Z.S.: Distributional structure. WORD 10(2–3), 146–162 (1954). https://doi.org/10.1080/00437956.1954.11659520

    Article  Google Scholar 

  27. He, R., McAuley, J.: Fusing Similarity Models with Markov Chains for Sparse Sequential Recommendation. In: 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, Barcelona, Spain, pp. 191–200 (2016). https://doi.org/10.1109/ICDM.2016.0030. http://ieeexplore.ieee.org/document/7837843/

  28. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based Recommendations with Recurrent Neural Networks. arXiv:1511.06939 [cs] (2016)

  29. Hidasi, B., Quadrana, M., Karatzoglou, A., Tikk, D.: Parallel Recurrent Neural Network Architectures for Feature-rich Session-based Recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, RecSys ’16, pp. 241–248. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2959100.2959167

  30. Ishigaki, T., Terui, N., Sato, T., Allenby, G.M.: Personalized market response analysis for a wide variety of products from sparse transaction data. Int. J. Data Sci. Anal. 5(4), 233–248 (2018). https://doi.org/10.1007/s41060-018-0099-9

    Article  Google Scholar 

  31. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction. Cambridge University Press (2010). Google-Books-ID: eygTJBd_U2cC

  32. Kabbur, S., Ning, X., Karypis, G.: FISM: factored item similarity models for top-N recommender systems. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 659–667. ACM, Chicago Illinois USA (2013). https://doi.org/10.1145/2487575.2487589

  33. Kang, W.C., McAuley, J.: Self-Attentive Sequential Recommendation. arXiv:1808.09781 [cs] (2018)

  34. Karatzoglou, A., Baltrunas, L., Shi, Y.: Learning to rank for recommender systems. In: Proceedings of the 7th ACM conference on Recommender systems, pp. 493–494. ACM, Hong Kong China (2013). https://doi.org/10.1145/2507157.2508063

  35. Koren, Y.: Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09, pp. 447–456. Association for Computing Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1557019.1557072

  36. Kumara Swamy, M., Krishna Reddy, P.: A model of concept hierarchy-based diverse patterns with applications to recommender system. Int. J. Data Sci. Anal. 10(2), 177–191 (2020). https://doi.org/10.1007/s41060-019-00203-2

    Article  Google Scholar 

  37. Kiran, R., Kumar, P., Bhasker, B.: DNNRec: a novel deep learning based hybrid recommender system. Expert Syst. Appl. 144, 113054 (2020)

    Article  Google Scholar 

  38. Li, J., Li, L., Wu, Y., Chen, S.: An improved recommender based on hidden Markov model p. 5

  39. Li, T., Choi, M., Fu, K., Lin, L.: Music Sequence Prediction with Mixture Hidden Markov Models. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 6128–6132 (2019). https://doi.org/10.1109/BigData47090.2019.9005695

  40. Liu, T., Wang, Z., Tang, J., Yang, S., Huang, G.Y., Liu, Z.: Recommender systems with heterogeneous side information. arXiv:1907.08679 [cs, stat] (2019)

  41. Mabroukeh, N.R., Ezeife, C.I.: A taxonomy of sequential pattern mining algorithms. ACM Comput. Surv. 43(1), 3:1-3:41 (2010). https://doi.org/10.1145/1824795.1824798

    Article  Google Scholar 

  42. Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Ontological user profiling in recommender systems. ACM Trans. Inf. Syst. 22(1), 54–88 (2004). https://doi.org/10.1145/963770.963773

    Article  Google Scholar 

  43. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed Representations of Words and Phrases and their Compositionality. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26, pp. 3111–3119. Curran Associates, Inc. (2013). http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf

  44. Nasir, M., Ezeife, C.I.: Semantics embedded sequential recommendation for E-commerce products (SEMSRec). In: 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 270–274 (2020). https://doi.org/10.1109/ASONAM49781.2020.9381352. ISSN: 2473-991X

  45. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543.

  46. Polyzou, A., Karypis, G.: Scholars walk: a Markov chain framework for course recommendation p. 6 (2019)

  47. Quadrana, M., Cremonesi, P., Jannach, D.: Sequence-aware recommender systems. arXiv:1802.08452 [cs] (2018)

  48. Quadrana, M., Karatzoglou, A., Hidasi, B., Cremonesi, P.: Personalizing session-based recommendations with hierarchical recurrent neural networks. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, RecSys ’17, pp. 130–137. Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3109859.3109896

  49. Raza, S., Ding, C.: A regularized model to trade-off between accuracy and diversity in a news recommender system. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 551–560. IEEE, Atlanta, GA, USA (2020). https://doi.org/10.1109/BigData50022.2020.9378340. https://ieeexplore.ieee.org/document/9378340/

  50. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized Markov chains for next-basket recommendation. In: Proceedings of the 19th International Conference on World Wide Web, WWW ’10, pp. 811–820. Association for Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1772690.1772773

  51. Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 1–34. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_1

    Chapter  MATH  Google Scholar 

  52. Rubino, G., Sericola, B.: Markov Chains and Dependability Theory. Cambridge University Press, Cambridge (2014). https://doi.org/10.1017/CBO9781139051705

    Book  MATH  Google Scholar 

  53. Salton, G.: Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley Series in Computer Science. Addison-Wesley, Reading (1988)

    Google Scholar 

  54. Sarukkai, R.R.: Link prediction and path analysis using Markov chains. Comput. Netw. 33(1–6), 377–386 (2000). https://doi.org/10.1016/S1389-1286(00)00044-X.

    Article  Google Scholar 

  55. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. Lecture Notes in Computer Science, pp. 291–324. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-72079-9_9

    Chapter  Google Scholar 

  56. Schafer, J.B., Konstan, J.A., Riedl, J.: E-Commerce recommendation applications. Data Min. Knowl. Discov. 5(1), 115–153 (2001). https://doi.org/10.1023/A:1009804230409

    Article  MATH  Google Scholar 

  57. Semeraro, G., Degemmis, M., Lops, P., Basile, P.: Combining learning and word sense disambiguation for intelligent user profiling. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI’07, pp. 2856–2861. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2007)

  58. Semeraro, G., Lops, P., Basile, P., de Gemmis, M.: Knowledge infusion into content-based recommender systems. In: Proceedings of the 3rd ACM Conference on Recommender Systems, RecSys ’09, pp. 301–304. Association for Computing Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1639714.1639773

  59. Shani, G., Heckerman, D., Brafman, R.I.: An MDP-based recommender system. J. Mach. Learn. Res. 6(Sep), 1265–1295 (2005). https://www.jmlr.org/papers/v6/shani05a

  60. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 1–19 (2009). https://doi.org/10.1155/2009/421425.

    Article  Google Scholar 

  61. Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., Jiang, P.: BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 1441–1450. ACM, Beijing China (2019). https://doi.org/10.1145/3357384.3357895

  62. Tang, J., Wang, K.: Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding. arXiv:1809.07426 [cs] (2018)

  63. Turney, P.D., Pantel, P.: From frequency to meaning: vector space models of semantics. J. Artif. Intell. Res. 37, 141–188 (2010). https://doi.org/10.1613/jair.2934.

    Article  MATH  Google Scholar 

  64. Wang, J., Huang, P., Zhao, H., Zhang, Z., Zhao, B., Lee, D.L.: Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 839–848. ACM, London United Kingdom (2018). https://doi.org/10.1145/3219819.3219869

  65. Wang, X., Kadıoğlu, S.: Modeling uncertainty to improve personalized recommendations via Bayesian deep learning. Int. J. Data Sci. Anal. (2021). https://doi.org/10.1007/s41060-020-00241-1

    Article  Google Scholar 

  66. Xiao, Y., Ezeife, C.I.: E-Commerce product recommendation using historical purchases and clickstream data. In: Ordonez, C., Bellatreche, L. (eds.) Big Data Analytics and Knowledge Discovery. Lecture Notes in Computer Science, pp. 70–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98539-8_6

    Chapter  Google Scholar 

  67. Xiao, Y., Yao, L., Pei, Q., Wang, X., Yang, J., Sheng, Q.Z.: Mgnn: mutualistic graph neural network for joint friend and item recommendation. IEEE Intell. Syst. 35(5), 7–17 (2020)

    Article  Google Scholar 

  68. Zhang, C., Philip, S.Y., Bell, D.: Introduction to the domain-drive data mining special section. IEEE Trans. Knowl. Data Eng. 22(6), 753–754 (2010)

    Article  Google Scholar 

  69. Zhao, H., Yao, Q., Song, Y., Kwok, J., Lee, D.L.: Side information fusion for recommender systems over heterogeneous information network. arXiv:1801.02411 [cs] (2020)

  70. Zhong, M., Li, C., Wen, J., Liu, L., Ma, J., Zhang, G., Yang, Y.: Hignet: hierarchical and interactive gate networks for item recommendation. IEEE Intell. Syst. 35(5), 50–61 (2020)

    Article  Google Scholar 

  71. Zimdars, A., Chickering, D.M., Meek, C.: Using temporal data for making recommendations. arXiv:1301.2320 [cs] (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahreen Nasir.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author stat-es that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the Natural Science and Engineering Research Council (NSERC) of Canada under an operating Grant (OGP-0194134) and a University of Windsor grant received by Dr. C. I. Ezeife.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasir, M., Ezeife, C.I. Semantic enhanced Markov model for sequential E-commerce product recommendation. Int J Data Sci Anal 15, 67–91 (2023). https://doi.org/10.1007/s41060-022-00343-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41060-022-00343-y

Keywords

Navigation