Skip to main content
Log in

Pairwise controllability and motion primitives for micro-rotors in a bounded Stokes flow

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Micro-robots that can propel themselves in a low Reynolds number fluid flow by converting their rotational motion into translation have begun attracting much attention due to their ease of fabrication. The dynamics and controllability of the motion of such microswimmers are investigated in this paper. The microswimmers under consideration here are spinning spheres (or rotors) whose dynamics are approximated by rotlets, a singularity solution of the Stokes equations. While singularities of Stokes flows are commonly used as theoretical models for microswimmers and micro-robots, rotlet models of microswimmers have received less attention. While a rotlet alone cannot generate translation, a pair of rotlets can interact and execute net motion. Taking the control inputs to be the strengths of the micro rotors, the positions of a pair of rotors are not controllable in an unbounded planar fluid domain. However, in a bounded domain, which is often the case of practical interest, we show that the positions of the micro rotors are controllable. This is enabled by the interaction of the rotors with the boundaries of the domain. We show how control inputs can be constructed based on combinations of Lie brackets to move the rotors from one point to another in the domain. Another contribution of this paper is the creation of a framework for path planning and control of the motion of Stokes singularities that model the dynamics of microswimmers. This can be extended to microswimmers with other shapes moving in confined fluid domains with complex boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Batchelor, G.K.: The stress system in a suspension of force-free particles. J. Fluid Mech. 41(3), 545570 (1970)

    Article  Google Scholar 

  • Blake, J.R., Chwang, A.T.: Fundamental singularities of viscous flow. J. Engi. Math. 8(1), 23–29 (1974)

    Article  Google Scholar 

  • Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, Berlin Heidelberg (2003)

    Book  Google Scholar 

  • Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems. Springer, Berlin (2004)

    MATH  Google Scholar 

  • Cheang, U.K., Meshkati, F., Kim, D., Kim, M.J., Fu, H.C.: Minimal geometric requirements for micropropulsion via magnetic rotation. Phys. Rev. E 90(3), 033007 (2014)

    Article  Google Scholar 

  • Chen, X.Z., Hoop, M., Mushtaq, F., Siringil, E., Hu, C., Nelson, B.J., Pané, S.: Recent developments in magnetically driven micro- and nanorobots. Appl. Mater. Today 9, 37–48 (2017)

    Article  Google Scholar 

  • Chwang, A.T., Wu, T.Y.: Hydromechanics of low-reynolds-number flow. Part 2. Singularity method for stokes flows. J. Fluid Mech. 67(4), 787815 (1975)

    Article  Google Scholar 

  • Ding, Y., Qiu, F., Solvas, X.C., Chiu, F.W.Y., Nelson, B.J., de Mello, A.: Microfluidic-based droplet and cell manipulations using artificial bacterial flagella. Micromachines 7(2), 25 (2016)

    Article  Google Scholar 

  • Dreyfus, R., Baudry, J., Roper, M.L., Fermigier, M., Stone, H.A., Bibette, J.: Microscopic artificial swimmers. Nature 437, 862 (2005)

    Article  Google Scholar 

  • Fily, Y., Baskaran, A., Marchetti, M.C.: Cooperative self-propulsion of active and passive rotors. Soft Matter 8, 3002–3009 (2012)

    Article  Google Scholar 

  • Gao, W., Kagan, D., Clawson, C., Campuzano, S., Chuluun-Erdene, E., Shipton, E., Fullerton, E., Zhang, L., Lauga, E., Wang, J.: Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small. 8(3), 460–467 (2012)

    Article  Google Scholar 

  • Ghosh, A., Mandal, P., Karmakar, S., Ghosh, A.: Analytical theory and stability analysis of an elongated nanoscale object under external torque. Phys. Chem. Chem. Phys. 15, 10817 (2013)

    Article  Google Scholar 

  • Grzybowski, B.A., Stone, H.A., Whitesides, G.M.: Dynamics of self assembly of magnetized disks rotating at the liquid–air interface. PNAS 99(7), 4147–4151 (2002)

    Article  Google Scholar 

  • Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media (Mechanics of Fluids and Transport Processes). Springer, Berlin Heidelberg (1983)

    Google Scholar 

  • Kadam, S., Joshi, K., Gupta, N., Katdare, P., Banavar, R.: Trajectory tracking using motion primitives for the purcell’s swimmer. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 3246–3251, Sept 2017

  • Kim, S., Karrila, S.J.: Microhydrodynamics: Principles and Selected Applications. Dover Publications, Mineola (2005)

    Google Scholar 

  • Lauga, E., DiLuzio, W.R., Whitesides, G.M., Stone, H.A.: Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90(2), 400–412 (2006)

    Article  Google Scholar 

  • Lauga, E., Powers, : The hydrodynamics of swimming microorganisms. Rep. Progress Phys. 72(9), 096601 (2009)

    Article  MathSciNet  Google Scholar 

  • Leoni, M., Liverpool, T.B.: Dynamics and interactions of active rotors. EPL (Eur. Lett.) 92(6), 64004 (2010)

    Article  Google Scholar 

  • Lushi, E., Vlahovska, P.M.: Periodic and chaotic orbits of plane-confined micro-rotors in creeping flows. J. Nonlinear Sci. 25(5), 11111123 (2015)

    Article  MathSciNet  Google Scholar 

  • Meleshko, V.V., Aref, H.: A blinking rotlet model for chaotic advection. Phys. Fluids 8, 3215 (1996)

    Article  Google Scholar 

  • Meshkati, F., Fu, H.: Modeling rigid magnetically rotated microswimmers: rotation axes, bistability, and controllability. Phys. Rev. E 90(6), 063006 (2014)

    Article  Google Scholar 

  • Murray, R., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  • Nelson, B.J., Kaliakatsos, I.K., Abbott, J.J.: Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010)

    Article  Google Scholar 

  • Or, Y., Zhang, S., Murray, R.: Dynamics and stability of low-Reynolds-number swimming near a wall. SIAM J. Appl. Dyn. Syst. 10(3), 1013–1041 (2011)

    Article  MathSciNet  Google Scholar 

  • Petit, T., Zhang, L., Peyer, K.E., Kratochvil, B.E., Nelson, B.J.: Selective trapping and manipulation of microscale objects using mobile microvortices. Nano Lett. 12(1), 156160 (2012)

    Article  Google Scholar 

  • Peyer, K.E., Zhang, L., Nelson, B.J.: Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 4(5), 1259–1272 (2013)

    Article  Google Scholar 

  • Purcell, E.M.: Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977)

    Article  Google Scholar 

  • Sastry, S.: Nonlinear Systems: Analysis, Stability, and Control. Springer, Berlin (1999)

    Book  Google Scholar 

  • Snezhko, A., Aranson, I.S.: Magnetic manipulation of self-assembled colloidal asters. Nat. Mater. 10, 698–703 (2011)

    Article  Google Scholar 

  • Spagnolie, S.E., Lauga, E.: Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105147 (2012)

    Article  MathSciNet  Google Scholar 

  • Sudarsanam, S., Tallapragada, P.: Chaotic mixing using micro-rotors in a confined domain (2018) (submitted to Physics of Fluids)

  • Tierno, P., Golestanian, R., Pagonabarraga, I., Sagués, F.: Controlled swimming in confined fluids of magnetically actuated colloidal rotors. Phys. Rev. Lett. 101, 218304 (2008)

    Article  Google Scholar 

  • Zhang, L., Abbott, J.J., Dong, L., Kratochvil, B.E., Bell, D., Nelson, B.J.: Artificial bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett. 94, 064107 (2009)

    Article  Google Scholar 

  • Zhang, L., Petit, T., Peyer, K.E., Nelson, B.J.: Targeted cargo delivery using a rotating nickel nanowire. Nanomedicine 8(7), 1074–80 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phanindra Tallapragada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buzhardt, J., Fedonyuk, V. & Tallapragada, P. Pairwise controllability and motion primitives for micro-rotors in a bounded Stokes flow. Int J Intell Robot Appl 2, 454–461 (2018). https://doi.org/10.1007/s41315-018-0075-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-018-0075-5

Keywords

Navigation