Skip to main content
Log in

P systems attacking hard problems beyond NP: a survey

  • Survey Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

In the field of membrane computing, a great attention is traditionally paid to the results demonstrating a theoretical possibility to solve NP-complete problems in polynomial time by means of various models of P systems. A bit less common is the fact that almost all models of P systems with this capability are actually stronger: some of them are able to solve PSPACE-complete problems in polynomial time, while others have been recently shown to characterize the class \(\mathbf {P^{\#P}}\) (which is conjectured to be strictly included in PSPACE). A large part of these results has appeared quite recently. In this survey, we focus on strong models of membrane systems which have the potential to solve hard problems belonging to classes containing NP. These include P systems with active membranes, P systems with proteins on membranes and tissue P systems, as well as P systems with symport/antiport and membrane division and, finally, spiking neural P systems. We provide a survey of computational complexity results of these membrane models, pointing out some features providing them with their computational strength. We also mention a sequence of open problems related to these topics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alhazov, A., Freund, R., Oswald, M. (2005). Tissue P systems with antiport rules and small numbers of symbols and cells. In: C. De Felice, A. Restivo (Eds.) Developments in Language Theory, DLT 2005, Lecture Notes in Computer Science (vol. 3572, pp. 54–78). Berlin: Springer

  2. Alhazov, A., Leporati, A., Mauri, G., Porreca, A. E., & Zandron, C. (2014). Space complexity equivalence of P systems with active membranes and turing machines. Theoretical Computer Science, 529, 69–81.

    Article  MathSciNet  MATH  Google Scholar 

  3. Alhazov, A., Martín-Vide, C., & Pan, L. (2003). Solving a PSPACE-complete problem by P systems with restricted active membranes. Fundamenta Informaticae, 58(2), 67–77.

    MathSciNet  MATH  Google Scholar 

  4. Alhazov, A., & Pérez-Jiménez, M. (2007). Uniform solution of QSAT using polarizationless active membranes. In: J. Durand-Lose, M. Margenstern (Eds.) Machines, Computations, and Universality, 5th International Conference, MCU 2007, Lecture Notes in Computer Science (vol. 4664, pp. 122–133). Springer.

  5. Bernardini, F., & Gheorghe, M. (2005). Cell communication in tissue P systems and cell division in population P systems. Soft Computing, 9(9), 640–649.

    Article  MATH  Google Scholar 

  6. Cavaliere, M. (2013). Time-free solutions to hard computational problems. In: M. Gheorghe, G. Păun, M.J. Pérez-Jiménez, G. Rozenberg (Eds.) Research Frontiers of Membrane Computing: Open Problems and Research Topics, International Journal of Foundations of Computer Science (vol. 24 (5), pp. 579–582). World Scientific (2013). Section 11

  7. Cavaliere, M., & Sburlan, D. (2005). Time-independent P systems. In: G. Mauri, G. Paun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa (Eds.) Membrane Computing, 5th International Workshop, WMC 2004, Lecture Notes in Computer Science (vol. 3365, pp. 239–258). Springer

  8. Chandra, A.K., & Stockmeyer, L.J. (1976). Alternation. In: 17th Annual Symposium on Foundations of Computer Science, Houston, Texas, USA, 25–27 October 1976, pp. 98–108. IEEE Computer Society. https://doi.org/10.1109/SFCS.1976.4

  9. Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., & Vaszil, G. (Eds.). (2013). Membrane Computing—13th International Conference, CMC13, Lecture Notes in Computer Science (vol. 7762). Springer

  10. Díaz-Pernil, D., Pérez-Jiménez, M. J., & Romero-Jiménez, Á. (2009). Efficient simulation of tissue-like P systems by transition cell-like P systems. Natural Computing, 8(4), 797–806.

    Article  MathSciNet  MATH  Google Scholar 

  11. Eleftherakis, G., Kefalas, P., Paun, G., Rozenberg, G., & Salomaa, A. (eds.) (2007). Membrane Computing, 8th International Workshop, WMC 2007, Lecture Notes in Computer Science (vol. 4860). Springer

  12. Freund, R., Păun, G., & Pérez-Jiménez, M. (2005). Tissue P systems with channel states. Theoretical Computer Science, 330, 101–116.

    Article  MathSciNet  MATH  Google Scholar 

  13. Gutiérrez-Escudero, R., Pérez-Jiménez, M., & Rius-Font, M. Characterizing tractability by tissue-like P systems. In: Păun et al. [53], pp. 289–300

  14. Ionescu, M., Păun, G., & Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae, 71(2—-3), 279–308.

    MathSciNet  MATH  Google Scholar 

  15. Ishdorj, T. O., Leporati, A., Pan, L., Zeng, X., & Zhang, X. (2010). Deterministic solutions to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. Theoretical Computer Science, 411(25), 2345–2358.

    Article  MathSciNet  MATH  Google Scholar 

  16. Krishna, S., Lakshmanan, K., & Rama, R. (2003). Tissue P systems with contextual and rewriting rules. In: Paun, G., Rozenberg, G., Salomaa, A., Zandron C. (Eds.) Membrane Computing, Lecture Notes in Computer Science (vol. 2597, pp. 339–351). Springer, Berlin

  17. Krishna, S.N. (2007). On the computational power of flip-flop proteins on membranes. In: S.B. Cooper, B. Löwe, A. Sorbi (Eds.) Computation and Logic in the Real World, Lecture Notes in Computer Science (vol. 4497, pp. 695–704). Springer

  18. Lakshmanan, K., & Rama, R. (2006). The computational efficiency of insertion-deletion tissue P systems. In K. Subramanian, K. Rangarajan, & M. Mukund (Eds.), Formal Models, Languages and Applications (pp. 235–245). New York: World Scientific.

    Chapter  Google Scholar 

  19. van Leeuwen, J. (Ed.). (1990). Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity. Amsterdam: Elsevier.

    MATH  Google Scholar 

  20. Leporati, A. (2014). Computational complexity of P systems with active membranes. In: A. Alhazov, S. Cojocaru, M. Gheorghe, Y. Rogozhin, G. Rozenberg, A. Salomaa (Eds.) Fourteenth International Conference on Membrane Computing, CMC14, Lecture Notes in Computer Science (vol. 8340). Berlin: Springer.

  21. Leporati, A., Ferretti, C., Mauri, G., Pérez-Jiménez, M., & Zandron, C. (2009). Complexity aspects of polarizationless membrane systems. Natural Computing, 8(4), 703–717.

    Article  MathSciNet  MATH  Google Scholar 

  22. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., & Zandron, C. (2014). Simulating elementary active membranes, with an application to the P conjecture. In: M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sosík, C. Zandron (Eds.) Membrane Computing—15th International Conference, CMC15, Lecture Notes in Computer Science (vol. 8961, pp. 284–299). Springer.

  23. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2015). Membrane division, oracles, and the counting hierarchy. Fundamental Information, 138(1–2), 97–111.

    MathSciNet  MATH  Google Scholar 

  24. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2017). Characterising the complexity of tissue P systems with fission rules. Journal of Computer and System Sciences, 90, 115–128.

    Article  MathSciNet  MATH  Google Scholar 

  25. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., & Zandron, C. (2017). Shallow non-confluent P systems. In: A. Leporati, G. Rozenberg, A. Salomaa, C. Zandron (Eds.) Membrane Computing: 17th International Conference, CMC 2016, Lecture Notes in Computer Science (vol. 10105, pp. 307–316). Cham: Springer

  26. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., & Zandron, C. (2018) Solving qsat in sublinear depth. In: T. Hinze, J. Behre (Eds.) Proceedings of the Nineteenth International Conference on Membrane Computing (CMC19) (pp. 149–162). Berlin: Pro Business.

  27. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2018). Subroutines in P systems and closure properties of their complexity classes. Theoretical Computer Science. https://doi.org/10.1016/j.tcs.2018.06.012.

    Article  MATH  Google Scholar 

  28. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2018). A survey on space complexity of P systems with active membranes. International Journal of Advances in Engineering Sciences and Applied Mathematics, 10(3), 221–229.

    Article  MathSciNet  Google Scholar 

  29. Leporati, A., Zandron, C., Ferretti, C., & Mauri, G. (2007). On the computational power of spiking neural P systems. In M. Gutiérrez-Naranjo, G. Păun, A. Romero-Jiménez, & A. Riscos-Núnez (Eds.), Fifth Brainstorming Week on Membrane Computing (pp. 227–245). Sevilla: Fenix Editora.

  30. Liu, X., Suo, J., Leung, S., Liu, J., & Zeng, X. (2015). The power of time-free tissue P systems: Attacking NP-complete problems. Neurocomputing, 159(1), 151–156.

    Article  Google Scholar 

  31. Macías-Ramos, L.F., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rius-Font, M., & Valencia-Cabrera, L. The efficiency of tissue P systems with cell separation relies on the environment. In: Csuhaj-Varjú et al. [9] (pp. 243–256).

  32. Martín Vide, C., Pazos, J., Păun, G., & Rodríguez Patón, A. (2002). A new class of symbolic abstract neural nets: Tissue P systems. In: O. Ibarra, L. Zhang (Eds.) Computing and Combinatorics, Lecture Notes in Computer Science (vol. 2387, pp. 573–679). Berlin: Springer.

  33. Martín Vide, C., Pazos, J., Păun, G., & Rodríguez Patón, A. (2003). Tissue P systems. Theoretical Computer Science, 296, 295–326.

    Article  MathSciNet  MATH  Google Scholar 

  34. Mauri, G., Leporati, A., Manzoni, L., Porreca, A.E., & Zandron, C. (2015). Complexity classes for membrane systems: A survey. In: A.H. Dediu, E. Formenti, C. Martín-Vide, B. Truthe (Eds.) Language and Automata Theory and Applications: 9th International Conference, LATA 2015, Lecture Notes in Computer Science (vol. 8977, pp. 56–69). Springer.

  35. Murphy, N., & Woods, D. Active membrane systems without charges and using only symmetric elementary division characterise P. In: Eleftherakis et al. [11] (pp. 367–384).

  36. Murphy, N., & Woods, D. (2011). The computational power of membrane systems under tight uniformity conditions. Natural Computing, 10(1), 613–632.

    Article  MathSciNet  MATH  Google Scholar 

  37. Murphy, N., & Woods, D. (2014). Uniformity is weaker than semi-uniformity for some membrane systems. Fundamenta Informaticae, 134(1–2), 129–152.

    MathSciNet  MATH  Google Scholar 

  38. Orellana-Martín, D., Martínez-del Amor, M. Á., Pérez-Hurtado, I., Riscos-Núñez, A., Valencia-Cabrera, L., & Pérez-Jiménez, M. J. (2018). When object production tunes the efficiency of membrane systems. Theoretical Computer Science. https://doi.org/10.1016/j.tcs.2018.04.013.

    Article  MATH  Google Scholar 

  39. Pan, L., & Ishdorj, T. O. (2004). P systems with active membranes and separation rules. Journal of Universal Computer Science, 10(5), 630–649.

    MathSciNet  Google Scholar 

  40. Pan, L., Păun, G., & Pérez-Jiménez, M. J. (2011). Spiking neural P systems with neuron division and budding. Science China Information Sciences, 54(8), 1596.

    Article  MathSciNet  MATH  Google Scholar 

  41. Pan, L., Song, B., Valencia-Cabrera, L., & Pérez-Jiménez, M. J. (2018). The computational complexity of tissue P systems with evolutional symport/antiport rules. Complexity. https://doi.org/10.1155/2018/3745210.

    Article  MATH  Google Scholar 

  42. Păun, A., & Rodríguez-Patón, A. On flip-flop membrane systems with proteins. In: Eleftherakis et al. [11]. (pp. 414–427).

  43. Pérez-Jiménez, M. A computational complexity theory in membrane computing. In: Păun et al. [53] (pp. 125–148).

  44. Pérez-Jiménez, M., Romero-Jiménez, A., & Sancho-Caparrini, F. (2003). Complexity classes in models of cellular computing with membranes. Natural Computing, 2, 265–285.

    Article  MathSciNet  MATH  Google Scholar 

  45. Pérez-Jiménez, M. J., & Sosík, P. (2015). An optimal frontier of the efficiency of tissue P systems with cell separation. Fundamental Information, 138(1–2), 45–60.

    MathSciNet  MATH  Google Scholar 

  46. Porreca, A., Leporati, A., Mauri, G., & Zandron, C. (2011). P systems with elementary active membranes: beyond NP and coNP. In: M. Gheorghe, T. Hinze, G. Păun, G. Rozenberg, A. Salomaa (eds.) Membrane Computing—11th International Conference, CMC11, Lecture Notes in Computer Science (vol. 6501, pp. 383–392). Springer.

  47. Porreca, A.E., Leporati, A., Mauri, G., & Zandron, C. (2012). P systems simulating oracle computations. In: M. Gheorghe, G. Păun, G. Rozenberg, A. Salomaa, S. Verlan (eds.) Membrane Computing—12th International Conference, CMC12, Lecture Notes in Computer Science (vol. 7184, pp. 346–358). Springer.

  48. Porreca, A. E., Mauri, G., & Zandron, C. (2010). Non-confluence in divisionless P systems with active membranes. Theoretical Computer Science, 411(6), 878–887.

    Article  MathSciNet  MATH  Google Scholar 

  49. Porreca, A.E., Murphy, N., & Pérez-Jiménez, M.J. (2012). An optimal frontier of the efficiency of tissue P systems with cell division. In: García-Quismondo, M. et al. (ed.) Proceedings of the Tenth Brainstorming Week on Membrane Computing (vol. II, pp. 141–166). Fénix Editora, Sevilla.

  50. Păun, A., & Popa, B. (2006). P systems with proteins on membranes. Fundamenta Informaticae, 72(4), 467–483.

    MathSciNet  MATH  Google Scholar 

  51. Păun, A., & Popa, B. (2006) P systems with proteins on membranes and membrane division. In: O. Ibarra, Z. Dang (Eds.) Developments in Language Theory, DLT 2006, Lecture Notes in Computer Science (vol. 4036, pp. 292–303). Berlin: Springer.

  52. Păun, A., & Păun, G. (2002). The power of communication: P systems with symport/antiport. New Generation Computer, 20(3), 295–306.

    Article  MATH  Google Scholar 

  53. Păun, G., Pérez-Jiménez, M., Riscos-Núnez, A., Rozenberg, G., & Salomaa, A. (eds.) (2010). Membrane Computing, 10th International Workshop, WMC 2009, Lecture Notes in Computer Science (vol. 5957). Berlin: Springer.

  54. Păun, G., Rozenberg, G., & Salomaa, A. (Eds.). (2010). The Oxford Handbook of Membrane Computing. Oxford: Oxford University Press.

    MATH  Google Scholar 

  55. Păun, G. (2001). P systems with active membranes: attacking NP-complete problems. Journal of Automata, Languages, and Combinatorics, 6(1), 75–90.

    MathSciNet  MATH  Google Scholar 

  56. Song, B., Pérez-Jiménez, M. J., & Pan, L. (2015). Efficient solutions to hard computational problems by P systems with symport/antiport rules and membrane division. Biosystems, 130, 51–58.

    Article  Google Scholar 

  57. Song, B., Pérez-Jiménez, M. J., & Pan, L. (2017). An efficient time-free solution to QSAT problem using P systems with proteins on membranes. Information and Computation, 256, 287–299.

    Article  MathSciNet  MATH  Google Scholar 

  58. Song, B., Song, T., & Pan, L. (2017). A time-free uniform solution to subset sum problem by tissue P systems with cell division. Mathematical Structures in Computer Science, 27(1), 17–32.

    Article  MathSciNet  MATH  Google Scholar 

  59. Song, T., Macas-Ramos, L. F., Pan, L., & Pérez-Jiménez, M. J. (2014). Time-free solution to SAT problem using P systems with active membranes. Theoretical Computer Science, 529, 61–68.

    Article  MathSciNet  MATH  Google Scholar 

  60. Sosík, P. Limits of the power of tissue P systems with cell division. In: Csuhaj-Varjú et al. [9] (pp. 390–403).

  61. Sosík, P., & Cienciala, L. (2012). Tissue P systems with cell separation: upper bound by PSPACE. In: A.H. Dediu, C. Martín-Vide, B. Truthe (Eds.) Theory and Practice of Natural Computing, TPNC 2012, Lecture Notes in Computer Science (vol. 7505, pp. 201–215). Springer.

  62. Sosík, P., & Rodríguez-Patón, A. (2007). Membrane computing and complexity theory: A characterization of PSPACE. Journal of Computer and System Sciences, 73(1), 137–152.

    Article  MathSciNet  MATH  Google Scholar 

  63. Sosík, P. (2011). Selected topics in computational complexity of membrane systems. In: J. Kelemen, A. Kelemenová (Eds.) Computation, Cooperation and Life, Lecture Notes in Computer Science (vol. 6610, pp. 125–137). Springer.

  64. Sosík, P., Păun, A., & Rodríguez-Patón, A. (2013). P systems with proteins on membranes characterize pspace. Theoretical Computer Science, 488, 78–95.

    Article  MathSciNet  MATH  Google Scholar 

  65. Sosík, P., Rodríguez-Patón, A., & Ciencialová, L. (2013). Polynomial time bounded computations in spiking neural P systems. Neural Network World, 23(1), 31–48. IF=0,412.

    Article  MATH  Google Scholar 

  66. Valsecchi, A., Porreca, A., Leporati, A., Mauri, G., & Zandron, C. An efficient simulation of polynomial-space turing machines by P systems with active membranes. In: Păun et al. [53] (pp. 461–478).

  67. Zandron, C., Leporati, A., Ferretti, C., Mauri, G., & Pérez-Jiménez, M. (2008). On the computational efficiency of polarizationless recognizer P systems with strong division and dissolution. Fundamenta Informaticae, 87(1), 79–91.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports Of the Czech Republic from the National Programme of Sustainability (NPU II) project IT4Innovations Excellence in Science—LQ1602, and by the Silesian University in Opava under the Student Funding Scheme, project SGS/11/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Sosík.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosík, P. P systems attacking hard problems beyond NP: a survey. J Membr Comput 1, 198–208 (2019). https://doi.org/10.1007/s41965-019-00017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-019-00017-y

Keywords

Navigation